Protein synthesis elongation factor EF-1 alpha is essential for ubiquitin-dependent degradation of certain N alpha-acetylated proteins and may be substituted for by the bacterial elongation factor EF-Tu - PubMed (original) (raw)
Protein synthesis elongation factor EF-1 alpha is essential for ubiquitin-dependent degradation of certain N alpha-acetylated proteins and may be substituted for by the bacterial elongation factor EF-Tu
H Gonen et al. Proc Natl Acad Sci U S A. 1994.
Abstract
Targeting of different cellular proteins for conjugation and subsequent degradation via the ubiquitin pathway involves diverse recognition signals and distinct enzymatic factors. A few proteins are recognized via their N-terminal amino acid residue and conjugated by a ubiquitin-protein ligase that recognizes this residue. Most substrates, including the N alpha-acetylated proteins that constitute the vast majority of cellular proteins, are targeted by different signals and are recognized by yet unknown ligases. We have previously shown that degradation of N-terminally blocked proteins requires a specific factor, designated FH, and that the factor acts along with the 26S protease complex to degrade ubiquitin-conjugated proteins. Here, we demonstrate that FH is the protein synthesis elongation factor EF-1 alpha. (a) Partial sequence analysis reveals 100% identity to EF-1 alpha. (b) Like EF-1 alpha, FH binds to immobilized GTP (or GDP) and can be purified in one step using the corresponding nucleotide for elution. (c) Guanine nucleotides that bind to EF-1 alpha protect the ubiquitin system-related activity of FH from heat inactivation, and nucleotides that do not bind do not exert this effect. (d) EF-Tu, the homologous bacterial elongation factor, can substitute for FH/EF-1 alpha in the proteolytic system. This last finding is of particular interest since the ubiquitin system has not been identified in prokaryotes. The activities of both EF-1 alpha and EF-Tu are strongly and specifically inhibited by ubiquitin-aldehyde, a specific inhibitor of ubiquitin isopeptidases. It appears, therefore, that EF-1 alpha may be involved in releasing ubiquitin from multiubiquitin chains, thus rendering the conjugates susceptible to the action of the 26S protease complex.
Similar articles
- Protein synthesis elongation factor EF-1 alpha is an isopeptidase essential for ubiquitin-dependent degradation of certain proteolytic substrates.
Gonen H, Dickman D, Schwartz AL, Ciechanover A. Gonen H, et al. Adv Exp Med Biol. 1996;389:209-19. doi: 10.1007/978-1-4613-0335-0_26. Adv Exp Med Biol. 1996. PMID: 8861013 - Specific peptide-activated proteolytic cleavage of Escherichia coli elongation factor Tu.
Georgiou T, Yu YN, Ekunwe S, Buttner MJ, Zuurmond A, Kraal B, Kleanthous C, Snyder L. Georgiou T, et al. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2891-5. doi: 10.1073/pnas.95.6.2891. Proc Natl Acad Sci U S A. 1998. PMID: 9501186 Free PMC article. - The ubiquitin-mediated proteolytic pathway: mechanisms of action and cellular physiology.
Ciechanover A. Ciechanover A. Biol Chem Hoppe Seyler. 1994 Sep;375(9):565-81. doi: 10.1515/bchm3.1994.375.9.565. Biol Chem Hoppe Seyler. 1994. PMID: 7840898 Review. - Messenger RNA translation in prokaryotes: GTPase centers associated with translational factors.
Laalami S, Grentzmann G, Bremaud L, Cenatiempo Y. Laalami S, et al. Biochimie. 1996;78(7):577-89. doi: 10.1016/s0300-9084(96)80004-6. Biochimie. 1996. PMID: 8955901 Review.
Cited by
- eEF1A Controls ascospore differentiation through elevated accuracy, but controls longevity and fruiting body formation through another mechanism in Podospora anserina.
Silar P, Lalucque H, Haedens V, Zickler D, Picard M. Silar P, et al. Genetics. 2001 Aug;158(4):1477-89. doi: 10.1093/genetics/158.4.1477. Genetics. 2001. PMID: 11514440 Free PMC article. - Degradation of newly synthesized polypeptides by ribosome-associated RACK1/c-Jun N-terminal kinase/eukaryotic elongation factor 1A2 complex.
Gandin V, Gutierrez GJ, Brill LM, Varsano T, Feng Y, Aza-Blanc P, Au Q, McLaughlan S, Ferreira TA, Alain T, Sonenberg N, Topisirovic I, Ronai ZA. Gandin V, et al. Mol Cell Biol. 2013 Jul;33(13):2510-26. doi: 10.1128/MCB.01362-12. Epub 2013 Apr 22. Mol Cell Biol. 2013. PMID: 23608534 Free PMC article. - The proteome response to amyloid protein expression in vivo.
Gomes RA, Franco C, Da Costa G, Planchon S, Renaut J, Ribeiro RM, Pinto F, Silva MS, Coelho AV, Freire AP, Cordeiro C. Gomes RA, et al. PLoS One. 2012;7(11):e50123. doi: 10.1371/journal.pone.0050123. Epub 2012 Nov 21. PLoS One. 2012. PMID: 23185553 Free PMC article. - eEF1A isoforms change in abundance and actin-binding activity during maize endosperm development.
Lopez-Valenzuela JA, Gibbon BC, Hughes PA, Dreher TW, Larkins BA. Lopez-Valenzuela JA, et al. Plant Physiol. 2003 Nov;133(3):1285-95. doi: 10.1104/pp.103.027854. Epub 2003 Oct 2. Plant Physiol. 2003. PMID: 14526107 Free PMC article. - eEF1A: thinking outside the ribosome.
Mateyak MK, Kinzy TG. Mateyak MK, et al. J Biol Chem. 2010 Jul 9;285(28):21209-13. doi: 10.1074/jbc.R110.113795. Epub 2010 May 5. J Biol Chem. 2010. PMID: 20444696 Free PMC article. Review.
References
- J Biol Chem. 1976 Feb 25;251(4):1009-14 - PubMed
- FEBS Lett. 1993 Jul 12;326(1-3):42-4 - PubMed
- J Biol Chem. 1984 Apr 25;259(8):5010-6 - PubMed
- J Biol Chem. 1986 Sep 25;261(27):12599-603 - PubMed
- Proc Natl Acad Sci U S A. 1987 Apr;84(7):1829-33 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous