Relative efficiencies of the maximum likelihood, maximum parsimony, and neighbor-joining methods for estimating protein phylogeny - PubMed (original) (raw)
Comparative Study
Relative efficiencies of the maximum likelihood, maximum parsimony, and neighbor-joining methods for estimating protein phylogeny
M Hasegawa et al. Mol Phylogenet Evol. 1993 Mar.
Abstract
The relative efficiencies of the maximum likelihood (ML), maximum parsimony (MP), and neighbor-joining (NJ) methods for protein phylogeny in obtaining the correct tree topology were studied by using computer simulation. Furthermore, the robustness of the methods against departures from the assumed underlying model was studied. The following conclusions were suggested: (1) While the MP method is sensitive to the violation of constant evolutionary rate among lineages, the ML and NJ methods are robust. (2) The NJ method is efficient even if the evolutionary rate differs among lineages, but it is prerequisite to estimate the distance matrix correctly in this case. (3) The ML method is generally (with some exceptions) robust with respect to violations of the assumed model for amino acid substitution. (4) The ML and MP methods are robust to heterogeneity of evolutionary rate among sites, while the NJ method is sometimes not efficient in the heterogeneous case, unless the heterogeneity is taken into account in estimating the multiple-hit effect.
Similar articles
- Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum-parsimony methods when substitution rate varies with site.
Tateno Y, Takezaki N, Nei M. Tateno Y, et al. Mol Biol Evol. 1994 Mar;11(2):261-77. doi: 10.1093/oxfordjournals.molbev.a040108. Mol Biol Evol. 1994. PMID: 8170367 - Maximum likelihood outperforms maximum parsimony even when evolutionary rates are heterotachous.
Gadagkar SR, Kumar S. Gadagkar SR, et al. Mol Biol Evol. 2005 Nov;22(11):2139-41. doi: 10.1093/molbev/msi212. Epub 2005 Jul 13. Mol Biol Evol. 2005. PMID: 16014870 - The effect of heterotachy in multigene analysis using the neighbor joining method.
Som A, Fuellen G. Som A, et al. Mol Phylogenet Evol. 2009 Sep;52(3):846-51. doi: 10.1016/j.ympev.2009.05.025. Epub 2009 May 29. Mol Phylogenet Evol. 2009. PMID: 19482090 - ML or NJ-MCL? A comparison between two robust phylogenetic methods.
Som A. Som A. Comput Biol Chem. 2009 Oct;33(5):373-8. doi: 10.1016/j.compbiolchem.2009.07.007. Epub 2009 Jul 19. Comput Biol Chem. 2009. PMID: 19679513 - Phylogenetic analysis in molecular evolutionary genetics.
Nei M. Nei M. Annu Rev Genet. 1996;30:371-403. doi: 10.1146/annurev.genet.30.1.371. Annu Rev Genet. 1996. PMID: 8982459 Review.
Cited by
- Bioinformatic Approaches for Comparative Analysis of Viruses.
Dorlass EG, Amgarten DE. Dorlass EG, et al. Methods Mol Biol. 2024;2802:395-425. doi: 10.1007/978-1-0716-3838-5_13. Methods Mol Biol. 2024. PMID: 38819566 - Maximum Likelihood Inference of Time-scaled Cell Lineage Trees with Mixed-type Missing Data.
Mai U, Chu G, Raphael BJ. Mai U, et al. bioRxiv [Preprint]. 2024 Mar 23:2024.03.05.583638. doi: 10.1101/2024.03.05.583638. bioRxiv. 2024. PMID: 38496496 Free PMC article. Preprint. - Pitfalls of the site-concordance factor (sCF) as measure of phylogenetic branch support.
Kück P, Romahn J, Meusemann K. Kück P, et al. NAR Genom Bioinform. 2022 Sep 15;4(3):lqac064. doi: 10.1093/nargab/lqac064. eCollection 2022 Sep. NAR Genom Bioinform. 2022. PMID: 36128424 Free PMC article. - Excavating the functionally crucial active-site residues of the DXS protein of Bacillus subtilis by exploring its closest homologues.
Runthala A, Sai TH, Kamjula V, Phulara SC, Rajput VS, Sangapillai K. Runthala A, et al. J Genet Eng Biotechnol. 2020 Nov 26;18(1):76. doi: 10.1186/s43141-020-00087-x. J Genet Eng Biotechnol. 2020. PMID: 33242110 Free PMC article. - Evolution of the avian β-defensin and cathelicidin genes.
Cheng Y, Prickett MD, Gutowska W, Kuo R, Belov K, Burt DW. Cheng Y, et al. BMC Evol Biol. 2015 Sep 15;15:188. doi: 10.1186/s12862-015-0465-3. BMC Evol Biol. 2015. PMID: 26373713 Free PMC article.