Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum - PubMed (original) (raw)
Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum
D Bradley et al. Cell. 1993.
Abstract
Recessive mutations at the plena (ple) locus result in a homeotic conversion of sex organs to sterile perianth organs in flowers of Antirrhinum majus. A complementary phenotype, in which sex organs replace sterile organs, is conferred by semidominant ovulata mutations. The ple locus was identified and isolated using a homologous gene, agamous from Arabidopsis, as a probe. The expression of ple is normally restricted to the inner two whorls of the flower, where sex organs develop. However, in ovulata mutants, ple is expressed ectopically in the outer two whorls of the flower and in vegetative organs. These mutants correspond to gain-of-function alleles of ple, suggesting that ple is sufficient for promoting sex organ development within the context of the flower. The plena and ovulata phenotypes result from opposite orientations of the transposon Tam3 inserted in the large intron of ple.
Similar articles
- PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development.
Davies B, Motte P, Keck E, Saedler H, Sommer H, Schwarz-Sommer Z. Davies B, et al. EMBO J. 1999 Jul 15;18(14):4023-34. doi: 10.1093/emboj/18.14.4023. EMBO J. 1999. PMID: 10406807 Free PMC article. - The homeotic Macho mutant of Antirrhinum majus reverts to wild-type or mutates to the homeotic plena phenotype.
Lönnig WE, Saedler H. Lönnig WE, et al. Mol Gen Genet. 1994 Dec 1;245(5):636-43. doi: 10.1007/BF00282227. Mol Gen Genet. 1994. PMID: 7808415 - STYLOSA and FISTULATA: regulatory components of the homeotic control of Antirrhinum floral organogenesis.
Motte P, Saedler H, Schwarz-Sommer Z. Motte P, et al. Development. 1998 Jan;125(1):71-84. doi: 10.1242/dev.125.1.71. Development. 1998. PMID: 9389665 - Molecular biology of flower development in Antirrhinum majus (snapdragon).
Saedler H, Huijser P. Saedler H, et al. Gene. 1993 Dec 15;135(1-2):239-43. doi: 10.1016/0378-1119(93)90071-a. Gene. 1993. PMID: 8276263 Review. - Arabidopsis flower development--of protein complexes, targets, and transport.
Becker A, Ehlers K. Becker A, et al. Protoplasma. 2016 Mar;253(2):219-30. doi: 10.1007/s00709-015-0812-7. Epub 2015 Apr 7. Protoplasma. 2016. PMID: 25845756 Review.
Cited by
- Rice APC/C(TE) controls tillering by mediating the degradation of MONOCULM 1.
Lin Q, Wang D, Dong H, Gu S, Cheng Z, Gong J, Qin R, Jiang L, Li G, Wang JL, Wu F, Guo X, Zhang X, Lei C, Wang H, Wan J. Lin Q, et al. Nat Commun. 2012 Mar 20;3:752. doi: 10.1038/ncomms1716. Nat Commun. 2012. PMID: 22434195 Free PMC article. - Pattern formation in the monocot embryo as revealed by NAM and CUC3 orthologues from Zea mays L.
Zimmermann R, Werr W. Zimmermann R, et al. Plant Mol Biol. 2005 Jul;58(5):669-85. doi: 10.1007/s11103-005-7702-x. Plant Mol Biol. 2005. PMID: 16158242 - Sizing Up the Floral Meristem.
Weigel D, Clark SE. Weigel D, et al. Plant Physiol. 1996 Sep;112(1):5-10. doi: 10.1104/pp.112.1.5. Plant Physiol. 1996. PMID: 12226369 Free PMC article. No abstract available. - ZmEBE genes show a novel, continuous expression pattern in the central cell before fertilization and in specific domains of the resulting endosperm after fertilization.
Magnard JL, Lehouque G, Massonneau A, Frangne N, Heckel T, Gutierrez-Marcos JF, Perez P, Dumas C, Rogowsky PM. Magnard JL, et al. Plant Mol Biol. 2003 Dec;53(6):821-36. doi: 10.1023/B:PLAN.0000023672.37089.00. Plant Mol Biol. 2003. PMID: 15082928 - Contributions of plant molecular systematics to studies of molecular evolution.
Soltis ED, Soltis PS. Soltis ED, et al. Plant Mol Biol. 2000 Jan;42(1):45-75. Plant Mol Biol. 2000. PMID: 10688130 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases