Development of a core RFLP map in maize using an immortalized F2 population - PubMed (original) (raw)
Development of a core RFLP map in maize using an immortalized F2 population
J M Gardiner et al. Genetics. 1993 Jul.
Abstract
A map derived from restriction fragment length polymorphisms (RFLPs) in maize (Zea mays L.) is presented. The map was constructed in an immortalized Tx303 x CO159 F2 mapping population that allowed for an unlimited number of markers to be mapped and pooled F3 seed to be distributed to other laboratories. A total of 215 markers consisting of 159 genomic clones, 16 isozymes and 35 cloned genes of defined function have been placed on 10 chromosomes. An examination of segregation data has revealed several genomic regions with aberrant segregation ratios favoring either parent or the heterozygote. Mapping of cloned genes and isozymes that have been previously mapped by functional criteria has provided 29 points of alignment with the classical maize genetic map. Screening of all mapped RFLP probes against a collection of U.S. Corn Belt germplasm using EcoRI, HindIII and EcoRV has resulted in a set of 97 core markers being defined. The designation of a set of core markers allows the maize genome to be subdivided into a series of bins which serve as the backbone for maize genetic information and database boundaries. The merits and applications of core markers and bins are discussed.
Similar articles
- Saturated molecular map of the rice genome based on an interspecific backcross population.
Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SE, et al. Causse MA, et al. Genetics. 1994 Dec;138(4):1251-74. doi: 10.1093/genetics/138.4.1251. Genetics. 1994. PMID: 7896104 Free PMC article. - Gene mapping with recombinant inbreds in maize.
Burr B, Burr FA, Thompson KH, Albertson MC, Stuber CW. Burr B, et al. Genetics. 1988 Mar;118(3):519-26. doi: 10.1093/genetics/118.3.519. Genetics. 1988. PMID: 3366363 Free PMC article. - Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization.
Yim YS, Davis GL, Duru NA, Musket TA, Linton EW, Messing JW, McMullen MD, Soderlund CA, Polacco ML, Gardiner JM, Coe EH Jr. Yim YS, et al. Plant Physiol. 2002 Dec;130(4):1686-96. doi: 10.1104/pp.013474. Plant Physiol. 2002. PMID: 12481051 Free PMC article. - Mapping RFLP loci in maize using B-A translocations.
Weber D, Helentjaris T. Weber D, et al. Genetics. 1989 Mar;121(3):583-90. doi: 10.1093/genetics/121.3.583. Genetics. 1989. PMID: 2565856 Free PMC article. - Comparative genetic and QTL mapping in sorghum and maize.
Lee M. Lee M. Symp Soc Exp Biol. 1996;50:31-8. Symp Soc Exp Biol. 1996. PMID: 9039432
Cited by
- Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression.
Damerval C, Maurice A, Josse JM, de Vienne D. Damerval C, et al. Genetics. 1994 May;137(1):289-301. doi: 10.1093/genetics/137.1.289. Genetics. 1994. PMID: 7914503 Free PMC article. - A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses.
Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z, Lin YR, Liu SC, Luo L, Marler BS, Ming R, Mitchell SE, Qiang D, Reischmann K, Schulze SR, Skinner DN, Wang YW, Kresovich S, Schertz KF, Paterson AH. Bowers JE, et al. Genetics. 2003 Sep;165(1):367-86. doi: 10.1093/genetics/165.1.367. Genetics. 2003. PMID: 14504243 Free PMC article. - Mapping QTLs contributing to Ustilago maydis resistance in specific plant tissues of maize.
Baumgarten AM, Suresh J, May G, Phillips RL. Baumgarten AM, et al. Theor Appl Genet. 2007 May;114(7):1229-38. doi: 10.1007/s00122-007-0513-5. Epub 2007 Feb 16. Theor Appl Genet. 2007. PMID: 17468806 - Comparative genetic mapping between duplicated segments on maize chromosomes 3 and 8 and homoeologous regions in sorghum and sugarcane.
Dufour P, Grivet L, D'Hont A, Deu M, Trouche G, Glaszmann JC, Hamon P. Dufour P, et al. Theor Appl Genet. 1996 Jun;92(8):1024-30. doi: 10.1007/BF00224044. Theor Appl Genet. 1996. PMID: 24166631 - Evidence for a common sex determination mechanism for pistil abortion in maize and in its wild relative Tripsacum.
Li D, Blakey CA, Dewald C, Dellaporta SL. Li D, et al. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4217-22. doi: 10.1073/pnas.94.8.4217. Proc Natl Acad Sci U S A. 1997. PMID: 9108132 Free PMC article.
References
- Genome. 1990 Dec;33(6):803-10 - PubMed
- Trends Genet. 1991 Feb;7(2):55-60 - PubMed
- Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9828-32 - PubMed
- Proc Natl Acad Sci U S A. 1986 May;83(9):2884-8 - PubMed
- Plant Physiol. 1989 Oct;91(2):636-43 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous