Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules - PubMed (original) (raw)
Comparative Study
. 1993 Sep 10;74(5):929-37.
doi: 10.1016/0092-8674(93)90472-3.
Affiliations
- PMID: 8104103
- DOI: 10.1016/0092-8674(93)90472-3
Comparative Study
Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules
J Ruppert et al. Cell. 1993.
Abstract
The functional determinants of histocompatibility leukocyte antigen (HLA)-A2.1-peptide interactions have been detailed by the use of quantitative molecular binding assays and a chemically synthesized library of naturally occurring epitopes. The importance of hydrophobic anchor residues in position 2 and the C-terminus was confirmed. These anchors are necessary, but not sufficient, for high affinity binding, as the predictions based solely on these anchors are only about 30% accurate. Prominent roles for several other positions (1, 3, and 7) were also demonstrated. The location of these residues within the peptides matches secondary A2.1 pockets previously demonstrated by X-ray crystallography. From a functional standpoint, similar dominant negative effects on binding were observed for charged residues in both nonamers and decamers, while positive effects differed between nonamers and decamers. An extended motif taking into account secondary anchors increased the predictability of A2.1-binding epitopes to a level of 70%, underscoring the practical usefulness of extended motifs.
Similar articles
- Selection of peptides that bind to the HLA-A2.1 molecule by molecular modelling.
Lim JS, Kim S, Lee HG, Lee KY, Kwon TJ, Kim K. Lim JS, et al. Mol Immunol. 1996 Feb;33(2):221-30. doi: 10.1016/0161-5890(95)00065-8. Mol Immunol. 1996. PMID: 8649443 - Identification of new epitopes from four different tumor-associated antigens: recognition of naturally processed epitopes correlates with HLA-A*0201-binding affinity.
Keogh E, Fikes J, Southwood S, Celis E, Chesnut R, Sette A. Keogh E, et al. J Immunol. 2001 Jul 15;167(2):787-96. doi: 10.4049/jimmunol.167.2.787. J Immunol. 2001. PMID: 11441084 - Class I MHC-peptide interaction: structural and functional aspects.
Ruppert J, Kubo RT, Sidney J, Grey HM, Sette A. Ruppert J, et al. Behring Inst Mitt. 1994 Jul;(94):48-60. Behring Inst Mitt. 1994. PMID: 7998914 Review. - Viruses and human cancer.
Liao JB. Liao JB. Yale J Biol Med. 2006 Dec;79(3-4):115-22. Yale J Biol Med. 2006. PMID: 17940621 Free PMC article. Review. No abstract available.
Cited by
- Energy landscapes of peptide-MHC binding.
Collesano L, Łuksza M, Lässig M. Collesano L, et al. PLoS Comput Biol. 2024 Sep 3;20(9):e1012380. doi: 10.1371/journal.pcbi.1012380. eCollection 2024 Sep. PLoS Comput Biol. 2024. PMID: 39226310 Free PMC article. - Building trust in deep learning-based immune response predictors with interpretable explanations.
Borole P, Rajan A. Borole P, et al. Commun Biol. 2024 Mar 6;7(1):279. doi: 10.1038/s42003-024-05968-2. Commun Biol. 2024. PMID: 38448546 Free PMC article. - A robust deep learning workflow to predict CD8 + T-cell epitopes.
Lee CH, Huh J, Buckley PR, Jang M, Pinho MP, Fernandes RA, Antanaviciute A, Simmons A, Koohy H. Lee CH, et al. Genome Med. 2023 Sep 13;15(1):70. doi: 10.1186/s13073-023-01225-z. Genome Med. 2023. PMID: 37705109 Free PMC article. - CD8 T cell function and cross-reactivity explored by stepwise increased peptide-HLA versus TCR affinity.
Baumgaertner P, Schmidt J, Costa-Nunes CM, Bordry N, Guillaume P, Luescher I, Speiser DE, Rufer N, Hebeisen M. Baumgaertner P, et al. Front Immunol. 2022 Aug 10;13:973986. doi: 10.3389/fimmu.2022.973986. eCollection 2022. Front Immunol. 2022. PMID: 36032094 Free PMC article. - Charge-based interactions through peptide position 4 drive diversity of antigen presentation by human leukocyte antigen class I molecules.
Jackson KR, Antunes DA, Talukder AH, Maleki AR, Amagai K, Salmon A, Katailiha AS, Chiu Y, Fasoulis R, Rigo MM, Abella JR, Melendez BD, Li F, Sun Y, Sonnemann HM, Belousov V, Frenkel F, Justesen S, Makaju A, Liu Y, Horn D, Lopez-Ferrer D, Huhmer AF, Hwu P, Roszik J, Hawke D, Kavraki LE, Lizée G. Jackson KR, et al. PNAS Nexus. 2022 Jul 27;1(3):pgac124. doi: 10.1093/pnasnexus/pgac124. eCollection 2022 Jul. PNAS Nexus. 2022. PMID: 36003074 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials