Radiation-induced lung damage in rats: the influence of fraction spacing on effect per fraction - PubMed (original) (raw)

Radiation-induced lung damage in rats: the influence of fraction spacing on effect per fraction

C K Haston et al. Int J Radiat Oncol Biol Phys. 1994.

Abstract

Purpose: When the linear-quadratic model is used to predict fractionated treatments which are isoeffective, it is usually assumed that each (equal size) treatment fraction has an equal effect, independent of the time at which it was delivered during a course of treatment. Previous work by our group has indicated that this assumption may not be valid in the context of radiation-induced lung damage in rats. Consequently we tested directly the validity of the assumption that each fraction has an equal effect, independent of the time it is delivered.

Methods and materials: An experiment was completed in which fractionated irradiation was given to whole thoraces of Sprague-Dawley rats. All treatment schedules consisted of eleven equal dose fractions in 36 days given as a split course, with some groups receiving the bulk of the doses early in the treatment schedule, before a 27-day gap, and others receiving most of the dose toward the end of the treatment schedule, after the time gap. To monitor the incidence of radiation-induced damage, breathing rate and lethality assays were used.

Results: The maximum differences in the LD50s and breathing rate ED50s for the different fractionation schedules were 4.0% and 7.7% respectively. The lethality data and breathing rate data were consistent with results expected from modelling using the linear-quadratic model with the inclusion of an overall time factor, but not the generalized linear-quadratic model which accounted for fraction spacing.

Conclusion: For conventional daily fractionation, and within the range of experimental uncertainties, the results indicate that the effect of a treatment fraction does not depend on the time at which it is given (its position) in the treatment. The results indicate no need to extend isoeffect formulae to consider the effect of each fraction separately for radiation-induced lung damage.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources