A glyceraldehyde-3-phosphate dehydrogenase with eubacterial features in the amitochondriate eukaryote, Trichomonas vaginalis - PubMed (original) (raw)
A glyceraldehyde-3-phosphate dehydrogenase with eubacterial features in the amitochondriate eukaryote, Trichomonas vaginalis
A Markos et al. J Mol Evol. 1993 Dec.
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), localized in the cytosol of Trichomonas vaginalis, was partially purified. The enzyme is specific for NAD+ and is similar in most of its catalytic properties to glycolytic GAPDHs from other organisms. Its sensitivity to koningic acid is similar to levels observed in GAPDHs from eubacteria and two orders of magnitude lower than those observed for eukaryotic GAPDHs. The complete amino acid sequence of T. vaginalis GAPDH was derived from the N-terminal sequence of the purified protein and the deduced sequence of a cDNA clone. It showed great similarity to other eubacterial and eukaryotic GAPDH sequences. The sequence of the S-loop displayed a eubacterial signature. The overall sequence was more similar to eubacterial sequences than to cytosolic and glycosomal eukaryotic sequences. In phylogenetic trees obtained with distance matrix and parsimony methods T. vaginalis GAPDH clustered with its eubacterial homologs. GAPDHs of other amitochondriate protists, belonging to early branches of the eukaryotic lineage (Giardia lamblia and Entamoeba histolytica--Smith M.W. and Doolittle R.F., unpublished data in GenBank), showed typical eukaryotic signatures and clustered with other eukaryotic sequences, indicating that T. vaginalis GAPDH occupies an anomalous position, possibly due to horizontal gene transfer from a eubacterium.
Similar articles
- The pyrophosphate-dependent phosphofructokinase of the protist, Trichomonas vaginalis, and the evolutionary relationships of protist phosphofructokinases.
Mertens E, Ladror US, Lee JA, Miretsky A, Morris A, Rozario C, Kemp RG, Müller M. Mertens E, et al. J Mol Evol. 1998 Dec;47(6):739-50. doi: 10.1007/pl00006433. J Mol Evol. 1998. PMID: 9847416 - Glyceraldehyde-3-phosphate dehydrogenase gene diversity in eubacteria and eukaryotes: evidence for intra- and inter-kingdom gene transfer.
Figge RM, Schubert M, Brinkmann H, Cerff R. Figge RM, et al. Mol Biol Evol. 1999 Apr;16(4):429-40. doi: 10.1093/oxfordjournals.molbev.a026125. Mol Biol Evol. 1999. PMID: 10331270 - Energy metabolism of ancestral eukaryotes: a hypothesis based on the biochemistry of amitochondriate parasitic protists.
Müller M. Müller M. Biosystems. 1992;28(1-3):33-40. doi: 10.1016/0303-2647(92)90005-j. Biosystems. 1992. PMID: 1292665 Review. - Enzymes on microbial pathogens and Trichomonas vaginalis: molecular mimicry and functional diversity.
Alderete JF, Millsap KW, Lehker MW, Benchimol M. Alderete JF, et al. Cell Microbiol. 2001 Jun;3(6):359-70. doi: 10.1046/j.1462-5822.2001.00126.x. Cell Microbiol. 2001. PMID: 11422079 Review. No abstract available.
Cited by
- Innovative Hybrid-Alignment Annotation Method for Bioinformatics Identification and Functional Verification of a Novel Nitric Oxide Synthase in Trichomonas vaginalis.
Lin HC, Shui HA, Huang KY, Lin WZ, Chang HY, Lee HJ, Lin YC, Huang YS, Chen GR, Yang YT, Liu HL, Wu YS, Cheng CS, Ko CL, Chang YT, Lee JC, Lin CS, Wang CH, Chu CM. Lin HC, et al. Biology (Basel). 2022 Aug 12;11(8):1210. doi: 10.3390/biology11081210. Biology (Basel). 2022. PMID: 36009837 Free PMC article. - Chlamydia trachomatis glyceraldehyde 3-phosphate dehydrogenase: Enzyme kinetics, high-resolution crystal structure, and plasminogen binding.
Schormann N, Campos J, Motamed R, Hayden KL, Gould JR, Green TJ, Senkovich O, Banerjee S, Ulett GC, Chattopadhyay D. Schormann N, et al. Protein Sci. 2020 Dec;29(12):2446-2458. doi: 10.1002/pro.3975. Epub 2020 Oct 30. Protein Sci. 2020. PMID: 33058314 Free PMC article. - N-Terminal Presequence-Independent Import of Phosphofructokinase into Hydrogenosomes of Trichomonas vaginalis.
Rada P, Makki AR, Zimorski V, Garg S, Hampl V, Hrdý I, Gould SB, Tachezy J. Rada P, et al. Eukaryot Cell. 2015 Dec;14(12):1264-75. doi: 10.1128/EC.00104-15. Epub 2015 Oct 16. Eukaryot Cell. 2015. PMID: 26475173 Free PMC article. - Biochemistry and evolution of anaerobic energy metabolism in eukaryotes.
Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AG, Martin WF. Müller M, et al. Microbiol Mol Biol Rev. 2012 Jun;76(2):444-95. doi: 10.1128/MMBR.05024-11. Microbiol Mol Biol Rev. 2012. PMID: 22688819 Free PMC article. Review. - Complete WO phage sequences reveal their dynamic evolutionary trajectories and putative functional elements required for integration into the Wolbachia genome.
Tanaka K, Furukawa S, Nikoh N, Sasaki T, Fukatsu T. Tanaka K, et al. Appl Environ Microbiol. 2009 Sep;75(17):5676-86. doi: 10.1128/AEM.01172-09. Epub 2009 Jul 10. Appl Environ Microbiol. 2009. PMID: 19592535 Free PMC article.
References
- Science. 1967 Jan 20;155(3760):279-84 - PubMed
- Nucleic Acids Res. 1990 Jul 25;18(14):4271 - PubMed
- Trends Biochem Sci. 1992 Dec;17(12):489-93 - PubMed
- EMBO J. 1990 Sep;9(9):2751-8 - PubMed
- Methods Enzymol. 1990;183:659-69 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Molecular Biology Databases
Research Materials