Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones - PubMed (original) (raw)
Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones
P S Chard et al. J Physiol. 1993 Dec.
Abstract
1. We have examined the ability of the Ca(2+)-binding proteins (CABP) calbindin D28k and paravalbumin to modulate increases in the intracellular free Ca2+ concentration ([Ca2+]i), produced by brief depolarizations, in rat dorsal root ganglion (DRG) neurones. 2. In order to obtain good voltage control, we replated DRG neurones prior to performing these experiments. Immunocytochemical staining of these cells revealed that approximately 10% stained for CABPs. 3. Using fluorescently labelled parvalbumin, we demonstrated that in the whole-cell voltage clamp mode the protein freely entered the cell soma with a mean half-life t0.5 of 6 min 22 s +/- 54 s. 4. Analysis of the effects of calbindin D28k (370 microM) and parvalbumin (1 mM) on Ca2+ currents in the whole-cell voltage clamp mode, revealed that neither protein changed the rate of inactivation of the Ca2+ current or its rate of run-down. 5. Introducing either calbindin D28k (370 microM) or parvalbumin (1 mM) into the cell soma did not significantly alter the basal [Ca2+]i when compared to control cells. 6. Compared to control cells, both CABPs significantly reduced the peak [Ca2+]i obtained for a Ca2+ influx of an equivalent charge density, whereas lysozyme (1 mM), a protein with low affinity for Ca2+, failed to do so. 7. Calbindin D28k caused an 8-fold decrease in the rate of rise in [Ca2+]i and altered the kinetics of decay of [Ca2+]i to a single slow component. Parvalbumin also slowed the rate of rise in [Ca2+]i. Parvalbumin selectively increased a fast component in the decay of the Ca2+ signal. 8. These data demonstrate that both calbindin D28k and paravalbumin effectively buffer Ca2+ in a cellular environment and may therefore regulate Ca(2+)-dependent aspects of neuronal function.
Similar articles
- Analysis of parvalbumin and calbindin D28k-immunoreactive neurons in dorsal root ganglia of rat in relation to their cytochrome oxidase and carbonic anhydrase content.
Carr PA, Yamamoto T, Karmy G, Baimbridge KG, Nagy JI. Carr PA, et al. Neuroscience. 1989;33(2):363-71. doi: 10.1016/0306-4522(89)90216-9. Neuroscience. 1989. PMID: 2560150 - Stimulation of plasma membrane Ca2+ pump by calbindin-D28k and calmodulin is additive in EGTA-free solutions.
Timmermans JA, Bindels RJ, Van Os CH. Timmermans JA, et al. J Nutr. 1995 Jul;125(7 Suppl):1981S-1986S. doi: 10.1093/jn/125.suppl_7.1981S. J Nutr. 1995. PMID: 7602380 - Parvalbumin is highly colocalized with calbindin D28k and rarely with calcitonin gene-related peptide in dorsal root ganglia neurons of rat.
Carr PA, Yamamoto T, Karmy G, Baimbridge KG, Nagy JI. Carr PA, et al. Brain Res. 1989 Sep 11;497(1):163-70. doi: 10.1016/0006-8993(89)90983-9. Brain Res. 1989. PMID: 2790451 - A comparative study of the calcium-binding proteins calbindin-D28K, calretinin, calmodulin and parvalbumin in the rat spinal cord.
Ren K, Ruda MA. Ren K, et al. Brain Res Brain Res Rev. 1994 May;19(2):163-79. doi: 10.1016/0165-0173(94)90010-8. Brain Res Brain Res Rev. 1994. PMID: 8061685 Review. - The use of transgenic mouse models to reveal the functions of Ca2+ buffer proteins in excitable cells.
Schwaller B. Schwaller B. Biochim Biophys Acta. 2012 Aug;1820(8):1294-303. doi: 10.1016/j.bbagen.2011.11.008. Epub 2011 Nov 27. Biochim Biophys Acta. 2012. PMID: 22138448 Review.
Cited by
- Distribution of calcium-binding proteins in the cerebellum.
Bastianelli E. Bastianelli E. Cerebellum. 2003;2(4):242-62. doi: 10.1080/14734220310022289. Cerebellum. 2003. PMID: 14964684 Review. - Dopamine affects parvalbumin expression during cortical development in vitro.
Porter LL, Rizzo E, Hornung JP. Porter LL, et al. J Neurosci. 1999 Oct 15;19(20):8990-9003. doi: 10.1523/JNEUROSCI.19-20-08990.1999. J Neurosci. 1999. PMID: 10516317 Free PMC article. - Impaired long-term potentiation induction in dentate gyrus of calretinin-deficient mice.
Schurmans S, Schiffmann SN, Gurden H, Lemaire M, Lipp HP, Schwam V, Pochet R, Imperato A, Böhme GA, Parmentier M. Schurmans S, et al. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10415-20. doi: 10.1073/pnas.94.19.10415. Proc Natl Acad Sci U S A. 1997. PMID: 9294225 Free PMC article. - Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene.
Airaksinen MS, Eilers J, Garaschuk O, Thoenen H, Konnerth A, Meyer M. Airaksinen MS, et al. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1488-93. doi: 10.1073/pnas.94.4.1488. Proc Natl Acad Sci U S A. 1997. PMID: 9037080 Free PMC article. - Calcium signaling in a narrow somatic submembrane shell during synaptic activity in cerebellar Purkinje neurons.
Eilers J, Callewaert G, Armstrong C, Konnerth A. Eilers J, et al. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10272-6. doi: 10.1073/pnas.92.22.10272. Proc Natl Acad Sci U S A. 1995. PMID: 7479766 Free PMC article.
References
- Pflugers Arch. 1981 Aug;391(2):85-100 - PubMed
- Ann N Y Acad Sci. 1991;635:365-81 - PubMed
- J Neurosci. 1988 Nov;8(11):4089-97 - PubMed
- J Biol Chem. 1973 May 10;248(9):3313-26 - PubMed
- J Neurosci. 1991 Jun;11(6):1496-507 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous