Periplasmic disulphide bond formation is essential for cellulase secretion by the plant pathogen Erwinia chrysanthemi - PubMed (original) (raw)
Periplasmic disulphide bond formation is essential for cellulase secretion by the plant pathogen Erwinia chrysanthemi
I Bortoli-German et al. Mol Microbiol. 1994 Feb.
Abstract
Secretion to the cell exterior of cellulase EGZ and of at least six pectinases enables the Gram-negative Erwinia chrysanthemi to cause severe plant disease. The C-terminal cellulose-binding domain (CBD) of EGZ was found to contain a disulphide bond which forms, in the periplasm, between residues Cys-325 and Cys-382. Dithiothreitol (DTT)-treatment of native EGZ showed that the disulphide bond was dispensable, both for catalysis and cellulose binding. Adding DTT to E. chrysanthemi cultures led to immediate arrest of secretion of EGZ which accumulated in the periplasm where the CBD was eventually proteolysed. Site-directed mutagenesis that affected Cys residues involved in disulphide bond formation resulted in molecules that were catalytically active and able to bind to cellulose but were no longer secreted. Instead they accumulated in the periplasm. Interestingly, the region around EGZ Cys-325 is conserved in two pectinases secreted by the same pathway as EGZ. We conclude that the conserved Cys, and possibly adjacent residues, bear essential information for EGZ to be secreted and that periplasmic disulphide bond formation is an obligatory step which provides a pre-folded functional form of EGZ with secretion competence.
Similar articles
- Mutagenesis of cellulase EGZ for studying the general protein secretory pathway in Erwinia chrysanthemi.
Py B, Chippaux M, Barras F. Py B, et al. Mol Microbiol. 1993 Mar;7(5):785-93. doi: 10.1111/j.1365-2958.1993.tb01169.x. Mol Microbiol. 1993. PMID: 8469118 - Informational suppression to investigate structural functional and evolutionary aspects of the Erwinia chrysanthemi cellulase EGZ.
Bortoli-German I, Haiech J, Chippaux M, Barras F. Bortoli-German I, et al. J Mol Biol. 1995 Feb 10;246(1):82-94. doi: 10.1006/jmbi.1994.0068. J Mol Biol. 1995. PMID: 7853408 - Alteration of a single tryptophan residue of the cellulose-binding domain blocks secretion of the Erwinia chrysanthemi Cel5 cellulase (ex-EGZ) via the type II system.
Chapon V, Simpson HD, Morelli X, Brun E, Barras F. Chapon V, et al. J Mol Biol. 2000 Oct 20;303(2):117-23. doi: 10.1006/jmbi.2000.4103. J Mol Biol. 2000. PMID: 11023779
Cited by
- Disulfide bond in Pseudomonas aeruginosa lipase stabilizes the structure but is not required for interaction with its foldase.
Liebeton K, Zacharias A, Jaeger KE. Liebeton K, et al. J Bacteriol. 2001 Jan;183(2):597-603. doi: 10.1128/JB.183.2.597-603.2001. J Bacteriol. 2001. PMID: 11133953 Free PMC article. - Erwinia chrysanthemi iron metabolism: the unexpected implication of the inner membrane platform within the type II secretion system.
Douet V, Expert D, Barras F, Py B. Douet V, et al. J Bacteriol. 2009 Feb;191(3):795-804. doi: 10.1128/JB.00845-08. Epub 2008 Oct 31. J Bacteriol. 2009. PMID: 18978048 Free PMC article. - SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe-S] biogenesis under oxidative stress.
Nachin L, Loiseau L, Expert D, Barras F. Nachin L, et al. EMBO J. 2003 Feb 3;22(3):427-37. doi: 10.1093/emboj/cdg061. EMBO J. 2003. PMID: 12554644 Free PMC article. - Effects of Natural Rheum tanguticum on the Cell Wall Integrity of Resistant Phytopathogenic Pectobacterium carotovorum subsp. Carotovorum.
Qi Y, Wang M, Zhang B, Liu Y, Fan J, Wang Z, Song L, Mohamed Abdul P, Zhang H. Qi Y, et al. Molecules. 2022 Aug 19;27(16):5291. doi: 10.3390/molecules27165291. Molecules. 2022. PMID: 36014529 Free PMC article. - Structure-function analysis of XcpP, a component involved in general secretory pathway-dependent protein secretion in Pseudomonas aeruginosa.
Bleves S, Gérard-Vincent M, Lazdunski A, Filloux A. Bleves S, et al. J Bacteriol. 1999 Jul;181(13):4012-9. doi: 10.1128/JB.181.13.4012-4019.1999. J Bacteriol. 1999. PMID: 10383969 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources