Depolarization-induced Ca entry via Na-Ca exchange triggers SR release in guinea pig cardiac myocytes - PubMed (original) (raw)

Depolarization-induced Ca entry via Na-Ca exchange triggers SR release in guinea pig cardiac myocytes

A J Levi et al. Am J Physiol. 1994 Apr.

Abstract

In mammalian heart muscle, Ca entry through L-type Ca channels is thought to be the primary trigger for the sarcoplasmic reticulum (SR) Ca release, which initiates contraction. The results of this study show that, in guinea pig myocytes with a normal internal Na (10 mM Na in pipette), another trigger mechanisms for SR release and contraction exists. A crucial feature of these experiments was the ability to change rapidly the extracellular environment of a single myocyte so that alterations of intracellular Ca and SR Ca load were minimized for each solution change. We found the following results. 1) A switch to Na-free solution 50 ms before depolarization led to an increase of phasic contraction without increasing L-type Ca current (Ica) or Ca loading of the SR. 2) Although rapid application of 20 microM nifedipine 3 s before a + 10-mV pulse blocked ICa completely, 43 +/- 11 (SE) % of the phasic contraction remained. Similar results were obtained by rapid switching to 150 microM Cd to block ICa. 3) Phasic contraction and ICa had different voltage dependence. With steps to positive potentials there was little ICa but still a substantial phasic contraction. 4) Under action potential conditions, 64.6 +/- 7.9% of the control phasic contraction remained after switching to 20 microM nifedipine to block ICa. 5) The contraction remaining with nifedipine was unaffected by adding 100 microM Ni. Because 100 microM Ni blocks T-type Ca channels, this shows that Ca entry via T-type Ca channels is not involved in triggering SR release. 6) The phasic contraction remaining after a rapid switch to nifedipine was blocked completely by adding 5 mM Ni. Because this concentration of Ni is known to block the Na-Ca exchange, this result suggests that the exchange plays a role in triggering SR release. Taken together, the present results indicate that depolarization-induced Ca entry on the Na-Ca exchange is able to trigger SR release and phasic contraction. This explanation can account for increased phasic contraction after a rapid switch to Na-free solution, persistence of a phasic contraction in the complete absence of ICa, substantial phasic contraction at positive test potentials where there is no ICa, and abolition of nifedipine-resistant contraction by 5 mM Ni.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources