Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application - PubMed (original) (raw)
Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application
N O Petersen et al. Biophys J. 1993 Sep.
Abstract
Measurement of receptor distributions on cell surfaces is one important aspect of understanding the mechanism whereby receptors function. In recent years, scanning fluorescence correlation spectroscopy has emerged as an excellent tool for making quantitative measurements of cluster sizes and densities. However, the measurements are slow and usually require fixed preparations. Moreover, while the precision is good, the accuracy is limited by the relatively small amount of information in each measurement, such that many are required. Here we present a novel extension of the scanning correlation spectroscopy that solves a number of the present problems. The new technique, which we call image correlation spectroscopy, is based on quantitative analysis of confocal scanning laser microscopy images. Since these can be generated in a matter of a second or so, the measurements become more rapid. The image is collected over a large cell area so that more sampling is done, improving the accuracy. The sacrifice is a lower resolution in the sampling, which leads to a lower precision. This compromise of precision in favor of speed and accuracy still provides an enormous advantage for image correlation spectroscopy over scanning correlation spectroscopy. The present work demonstrates the underlying theory, showing how the principles can be applied to measurements on standard fluorescent beads and changes in distribution of receptors for platelet-derived growth factor on human foreskin fibroblasts.
Similar articles
- Accuracy and dynamic range of spatial image correlation and cross-correlation spectroscopy.
Costantino S, Comeau JW, Kolin DL, Wiseman PW. Costantino S, et al. Biophys J. 2005 Aug;89(2):1251-60. doi: 10.1529/biophysj.104.057364. Epub 2005 May 27. Biophys J. 2005. PMID: 15923223 Free PMC article. - Imaging fluorescence correlation spectroscopy: nonuniform IgE distributions on planar membranes.
Huang Z, Thompson NL. Huang Z, et al. Biophys J. 1996 Apr;70(4):2001-7. doi: 10.1016/S0006-3495(96)79766-7. Biophys J. 1996. PMID: 8785359 Free PMC article. - The F-techniques: advances in receptor protein studies.
Liu P, Ahmed S, Wohland T. Liu P, et al. Trends Endocrinol Metab. 2008 Jul;19(5):181-90. doi: 10.1016/j.tem.2008.02.004. Epub 2008 Apr 1. Trends Endocrinol Metab. 2008. PMID: 18387308 Review. - Recent applications of fluorescence correlation spectroscopy in live systems.
Macháň R, Wohland T. Macháň R, et al. FEBS Lett. 2014 Oct 1;588(19):3571-84. doi: 10.1016/j.febslet.2014.03.056. Epub 2014 Apr 12. FEBS Lett. 2014. PMID: 24726724 Review.
Cited by
- Arbitrary-Region Raster Image Correlation Spectroscopy.
Hendrix J, Dekens T, Schrimpf W, Lamb DC. Hendrix J, et al. Biophys J. 2016 Oct 18;111(8):1785-1796. doi: 10.1016/j.bpj.2016.09.012. Biophys J. 2016. PMID: 27760364 Free PMC article. - Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure.
Digman MA, Sengupta P, Wiseman PW, Brown CM, Horwitz AR, Gratton E. Digman MA, et al. Biophys J. 2005 May;88(5):L33-6. doi: 10.1529/biophysj.105.061788. Epub 2005 Mar 25. Biophys J. 2005. PMID: 15792971 Free PMC article. - Quantitating intracellular transport of polyplexes by spatio-temporal image correlation spectroscopy.
Kulkarni RP, Wu DD, Davis ME, Fraser SE. Kulkarni RP, et al. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7523-8. doi: 10.1073/pnas.0501950102. Epub 2005 May 16. Proc Natl Acad Sci U S A. 2005. PMID: 15897455 Free PMC article. - Quantitative determination of spatial protein-protein correlations in fluorescence confocal microscopy.
Wu Y, Eghbali M, Ou J, Lu R, Toro L, Stefani E. Wu Y, et al. Biophys J. 2010 Feb 3;98(3):493-504. doi: 10.1016/j.bpj.2009.10.037. Biophys J. 2010. PMID: 20141764 Free PMC article. - Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles.
Ruthardt N, Lamb DC, Bräuchle C. Ruthardt N, et al. Mol Ther. 2011 Jul;19(7):1199-211. doi: 10.1038/mt.2011.102. Epub 2011 Jun 7. Mol Ther. 2011. PMID: 21654634 Free PMC article. Review.
References
- J Cell Physiol. 1988 Mar;134(3):413-20 - PubMed
- Biophys J. 1987 Aug;52(2):257-70 - PubMed
- Biosci Rep. 1989 Feb;9(1):63-73 - PubMed
- Trends Biochem Sci. 1988 Nov;13(11):443-7 - PubMed
- Biophys J. 1990 Feb;57(2):375-80 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous