Transposons in place of telomeric repeats at a Drosophila telomere - PubMed (original) (raw)
Transposons in place of telomeric repeats at a Drosophila telomere
R W Levis et al. Cell. 1993.
Abstract
We present the first isolation of the terminal DNA of an intact Drosophila telomere. It differs from those isolated from other eukaryotes by the lack of short tandem repeats at the terminus. The terminal 14.5 kb is composed of four tandem elements derived from two families of non-long terminal repeat retrotransposons and is subject to slow terminal loss. One of these transposon families, TART (telomere-associated retrotransposon), is described for the first time here. The other element, HeT-A, has previously been shown to transpose to broken chromosome ends. Our results provide key evidence that these elements also transpose to natural chromosome ends. We propose that the telomere-associated repetitive DNA is maintained by saltatory expansions, including terminal transpositions of specialized retrotransposons, which serve to balance terminal loss.
Similar articles
- Transposition of the LINE-like retrotransposon TART to Drosophila chromosome termini.
Sheen FM, Levis RW. Sheen FM, et al. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12510-4. doi: 10.1073/pnas.91.26.12510. Proc Natl Acad Sci U S A. 1994. PMID: 7809068 Free PMC article. - Drosophila telomeres: two transposable elements with important roles in chromosomes.
Pardue ML, DeBaryshe PG. Pardue ML, et al. Genetica. 1999;107(1-3):189-96. Genetica. 1999. PMID: 10952212 - Coevolution of the telomeric retrotransposons across Drosophila species.
Casacuberta E, Pardue ML. Casacuberta E, et al. Genetics. 2002 Jul;161(3):1113-24. doi: 10.1093/genetics/161.3.1113. Genetics. 2002. PMID: 12136015 Free PMC article. - Drosophila telomere elongation.
Biessmann H, Walter MF, Mason JM. Biessmann H, et al. Ciba Found Symp. 1997;211:53-67; discussion 67-70. doi: 10.1002/9780470515433.ch5. Ciba Found Symp. 1997. PMID: 9524751 Review. - Drosophila telomere transposons: genetically active elements in heterochromatin.
Pardue ML, Debaryshe PG. Pardue ML, et al. Genetica. 2000;109(1-2):45-52. doi: 10.1023/a:1026540301503. Genetica. 2000. PMID: 11293794 Review.
Cited by
- Genomic analyses of intricate interaction of TE-lncRNA overlapping genes with miRNAs in human diseases.
Lee DH, Park EG, Kim JM, Shin HJ, Lee YJ, Jeong HS, Roh HY, Kim WR, Ha H, Kim SW, Choi YH, Kim HS. Lee DH, et al. Genes Genomics. 2024 Aug 31. doi: 10.1007/s13258-024-01547-1. Online ahead of print. Genes Genomics. 2024. PMID: 39215947 - Elimination of subtelomeric repeat sequences exerts little effect on telomere essential functions in Saccharomyces cerevisiae.
Hu C, Zhu XT, He MH, Shao Y, Qin Z, Wu ZJ, Zhou JQ. Hu C, et al. Elife. 2024 Apr 24;12:RP91223. doi: 10.7554/eLife.91223. Elife. 2024. PMID: 38656297 Free PMC article. - Unzipped chromosome-level genomes reveal allopolyploid nematode origin pattern as unreduced gamete hybridization.
Dai D, Xie C, Zhou Y, Bo D, Zhang S, Mao S, Liao Y, Cui S, Zhu Z, Wang X, Li F, Peng D, Zheng J, Sun M. Dai D, et al. Nat Commun. 2023 Nov 7;14(1):7156. doi: 10.1038/s41467-023-42700-w. Nat Commun. 2023. PMID: 37935661 Free PMC article. - TeloBase: a community-curated database of telomere sequences across the tree of life.
Lyčka M, Bubeník M, Závodník M, Peska V, Fajkus P, Demko M, Fajkus J, Fojtová M. Lyčka M, et al. Nucleic Acids Res. 2024 Jan 5;52(D1):D311-D321. doi: 10.1093/nar/gkad672. Nucleic Acids Res. 2024. PMID: 37602392 Free PMC article. - A genetic basis for facultative parthenogenesis in Drosophila.
Sperling AL, Fabian DK, Garrison E, Glover DM. Sperling AL, et al. Curr Biol. 2023 Sep 11;33(17):3545-3560.e13. doi: 10.1016/j.cub.2023.07.006. Epub 2023 Jul 28. Curr Biol. 2023. PMID: 37516115 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases