Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey - PubMed (original) (raw)
. 1993 Nov 1;337(1):94-112.
doi: 10.1002/cne.903370107.
Affiliations
- PMID: 8276995
- DOI: 10.1002/cne.903370107
Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey
J D Schmahmann et al. J Comp Neurol. 1993.
Abstract
We used tritiated amino acids to study projections to the basilar pons from prestriate cortices in 18 rhesus monkeys to determine how connectional and functional heterogeneity of these regions are reflected in corticopontine circuitry. Fibers travelled with those from other parasensory associative cortices before terminating in the pontine nuclei. Prelunate projections were derived from area 19 (OA) at the medial convexity (including areas V3 and PO) and from the lateral convexity dorsal to the caudal tip of the Sylvian fissure (including areas DP and the dorsal part of area V4d). Pontine projections also arose from area 19 (OA), and areas TF, TL, and TH in the posterior aspect of the parahippocampal gyrus. No pontine projections arose from the prelunate convexity ventral to the caudal tip of the Sylvian fissure (ventral part of area V4d and area V4v), area TEO, the inferior temporal gyrus, or the lateral ventral temporal region. Terminations in the pons were distributed in the dorsolateral and lateral nuclei, and the lateral part of the peripeduncular nucleus. Medial convexity injections produced more extensive rostrocaudal pontine labeling, as well as terminations in the extreme dorsolateral nucleus and the nucleus reticularis tegmenti pontis. Dorsal prelunate injections had additional terminations in the ventral pontine nucleus. Posterior parahippocampal gyrus injections resulted in discrete label in the lateral and dorsolateral nuclei. Corticopontine projections destined for the cerebellum appear to be derived from extrastriate areas concerned mainly with visual spatial parameters, visual motion, and the peripheral field of vision, but not from areas subserving visual object identification and the central field of vision. Pontine afferents from the posterior parahippocampal gyrus may facilitate a cerebellar contribution to visual spatial memory, particularly when invested with motivational valence.
Similar articles
- Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey.
Schmahmann JD, Pandya DN. Schmahmann JD, et al. J Comp Neurol. 1989 Nov 1;289(1):53-73. doi: 10.1002/cne.902890105. J Comp Neurol. 1989. PMID: 2478597 - Course of the fiber pathways to pons from parasensory association areas in the rhesus monkey.
Schmahmann JD, Pandya DN. Schmahmann JD, et al. J Comp Neurol. 1992 Dec 8;326(2):159-79. doi: 10.1002/cne.903260202. J Comp Neurol. 1992. PMID: 1479073 - Cortical afferents to behaviorally defined regions of the inferior temporal and parahippocampal gyri as demonstrated by WGA-HRP.
Martin-Elkins CL, Horel JA. Martin-Elkins CL, et al. J Comp Neurol. 1992 Jul 8;321(2):177-92. doi: 10.1002/cne.903210202. J Comp Neurol. 1992. PMID: 1380012 - The basilar pontine nuclei and the nucleus reticularis tegmenti pontis subserve distinct cerebrocerebellar pathways.
Cicirata F, Serapide MF, Parenti R, Pantò MR, Zappalà A, Nicotra A, Cicero D. Cicirata F, et al. Prog Brain Res. 2005;148:259-82. doi: 10.1016/S0079-6123(04)48021-2. Prog Brain Res. 2005. PMID: 15661196 Review. - Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey.
Schmahmann JD, Pandya DN. Schmahmann JD, et al. J Neurosci. 1997 Jan 1;17(1):438-58. doi: 10.1523/JNEUROSCI.17-01-00438.1997. J Neurosci. 1997. PMID: 8987769 Free PMC article. Review.
Cited by
- Functional Outcomes of Cerebellar Malformations.
Gill JS, Sillitoe RV. Gill JS, et al. Front Cell Neurosci. 2019 Oct 4;13:441. doi: 10.3389/fncel.2019.00441. eCollection 2019. Front Cell Neurosci. 2019. PMID: 31636540 Free PMC article. Review. - Differential prefrontal-like deficit in children after cerebellar astrocytoma and medulloblastoma tumor.
Vaquero E, Gómez CM, Quintero EA, González-Rosa JJ, Márquez J. Vaquero E, et al. Behav Brain Funct. 2008 Apr 15;4:18. doi: 10.1186/1744-9081-4-18. Behav Brain Funct. 2008. PMID: 18412947 Free PMC article. - Neurocognitive profile of a man with Dandy-Walker malformation: Evidence of subtle cerebellar cognitive affective syndrome.
Belser-Ehrlich J, Adrian Lafo J, Mangal P, Bradley M, Wicklund M, Bowers D. Belser-Ehrlich J, et al. Clin Neuropsychol. 2020 Apr;34(3):591-610. doi: 10.1080/13854046.2019.1569724. Epub 2019 Mar 1. Clin Neuropsychol. 2020. PMID: 30821610 Free PMC article. - Body Sway Increases After Functional Inactivation of the Cerebellar Vermis by cTBS.
Colnaghi S, Honeine JL, Sozzi S, Schieppati M. Colnaghi S, et al. Cerebellum. 2017 Feb;16(1):1-14. doi: 10.1007/s12311-015-0758-5. Cerebellum. 2017. PMID: 26780373 Free PMC article. - A Proposed Human Structural Brain Connectivity Matrix in the Center for Morphometric Analysis Harvard-Oxford Atlas Framework: A Historical Perspective and Future Direction for Enhancing the Precision of Human Structural Connectivity with a Novel Neuroanatomical Typology.
Makris N, Rushmore R, Kaiser J, Albaugh M, Kubicki M, Rathi Y, Zhang F, O'Donnell LJ, Yeterian E, Caviness VS, Kennedy DN. Makris N, et al. Dev Neurosci. 2023;45(4):161-180. doi: 10.1159/000530358. Epub 2023 Mar 28. Dev Neurosci. 2023. PMID: 36977393 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous