Pigment-dispersing hormone-immunoreactive neurons in the nervous system of wild-type Drosophila melanogaster and of several mutants with altered circadian rhythmicity - PubMed (original) (raw)
. 1993 Nov 8;337(2):177-90.
doi: 10.1002/cne.903370202.
Affiliations
- PMID: 8276996
- DOI: 10.1002/cne.903370202
Pigment-dispersing hormone-immunoreactive neurons in the nervous system of wild-type Drosophila melanogaster and of several mutants with altered circadian rhythmicity
C Helfrich-Förster et al. J Comp Neurol. 1993.
Abstract
Antisera against the crustacean pigment-dispersing hormone (beta-PDH) were used in immunocytochemical preparations to investigate the anatomy of PDH-immunoreactive neurons in the nervous system of wild-type Drosophila melanogaster and in that of several brain mutants of this species, some of which express altered circadian rhythmicity. In the wild-type and in all rhythmic mutants (small optic lobes, sine oculis, small optic lobes; sine oculis), eight cell bodies at the anterior base of the medulla (PDFMe neurons) exhibit intense PDH-like immunoreactivity. Four of the eight somata are large and four are smaller. The four large PDFMe neurons have wide tangential arborizations in the medulla and send axons via the posterior optic tract to the contralateral medulla. Fibers from the four small PDFMe neurons ramify in the median protocerebrum dorsal to the calyces of the mushroom bodies. Their terminals are adjacent to other PDH-immunoreactive somata (PDFCa neurons) which send axons via the median bundle into the tritocerebrum. The results suggest a possible involvement of the PDFMe neurons in the circadian pacemaking system of Drosophila. The location and size of the PDFMe neurons are identical with those of neurons containing the period protein which is essential for circadian rhythmicity. Changes in the arborizations of the PDFMe neurons in small optic lobes; sine oculis mutants are suited to explain the splitting in the locomotor rhythm of these flies. In the arrhythmic mutant, disconnected, the PDFMe neurons are absent. The arrhythmic mutant per0, however, shows normal PDH immunoreactivity and therefore, does not prevent the expression of PDH-like peptides in these neurons.
Similar articles
- Development of pigment-dispersing hormone-immunoreactive neurons in the nervous system of Drosophila melanogaster.
Helfrich-Förster C. Helfrich-Förster C. J Comp Neurol. 1997 Apr 14;380(3):335-54. doi: 10.1002/(sici)1096-9861(19970414)380:3<335::aid-cne4>3.0.co;2-3. J Comp Neurol. 1997. PMID: 9087517 - Pigment-dispersing hormone-like peptide in the nervous system of the flies Phormia and Drosophila: immunocytochemistry and partial characterization.
Nässel DR, Shiga S, Mohrherr CJ, Rao KR. Nässel DR, et al. J Comp Neurol. 1993 May 8;331(2):183-98. doi: 10.1002/cne.903310204. J Comp Neurol. 1993. PMID: 8509499 - Pigment-dispersing hormone (PDH)-immunoreactive neurons form a direct coupling pathway between the bilaterally symmetric circadian pacemakers of the cockroach Leucophaea maderae.
Reischig T, Petri B, Stengl M. Reischig T, et al. Cell Tissue Res. 2004 Dec;318(3):553-64. doi: 10.1007/s00441-004-0927-1. Epub 2004 Oct 2. Cell Tissue Res. 2004. PMID: 15578273 - Daily rhythms in cells of the fly's optic lobe: taking time out from the circadian clock.
Meinertzhagen IA, Pyza E. Meinertzhagen IA, et al. Trends Neurosci. 1996 Jul;19(7):285-91. doi: 10.1016/S0166-2236(96)10033-3. Trends Neurosci. 1996. PMID: 8799974 Review. - Organization of the circadian system in insects.
Helfrich-Förster C, Stengl M, Homberg U. Helfrich-Förster C, et al. Chronobiol Int. 1998 Nov;15(6):567-94. doi: 10.3109/07420529808993195. Chronobiol Int. 1998. PMID: 9844747 Review.
Cited by
- Circadian Regulation of Light-Evoked Attraction and Avoidance Behaviors in Daytime- versus Nighttime-Biting Mosquitoes.
Baik LS, Nave C, Au DD, Guda T, Chevez JA, Ray A, Holmes TC. Baik LS, et al. Curr Biol. 2020 Aug 17;30(16):3252-3259.e3. doi: 10.1016/j.cub.2020.06.010. Epub 2020 Jul 2. Curr Biol. 2020. PMID: 32619483 Free PMC article. - Brain photoreceptor pathways contributing to circadian rhythmicity in crayfish.
Sullivan JM, Genco MC, Marlow ED, Benton JL, Beltz BS, Sandeman DC. Sullivan JM, et al. Chronobiol Int. 2009 Aug;26(6):1136-68. doi: 10.3109/07420520903217960. Chronobiol Int. 2009. PMID: 19731110 Free PMC article. - Transcriptome and peptidome characterisation of the main neuropeptides and peptidic hormones of a euphausiid: the Ice Krill, Euphausia crystallorophias.
Toullec JY, Corre E, Bernay B, Thorne MA, Cascella K, Ollivaux C, Henry J, Clark MS. Toullec JY, et al. PLoS One. 2013 Aug 21;8(8):e71609. doi: 10.1371/journal.pone.0071609. eCollection 2013. PLoS One. 2013. PMID: 23990964 Free PMC article. - Reflections on contributing to "big discoveries" about the fly clock: Our fortunate paths as post-docs with 2017 Nobel laureates Jeff Hall, Michael Rosbash, and Mike Young.
Siwicki KK, Hardin PE, Price JL. Siwicki KK, et al. Neurobiol Sleep Circadian Rhythms. 2018 Mar 16;5:58-67. doi: 10.1016/j.nbscr.2018.02.004. eCollection 2018 Jun. Neurobiol Sleep Circadian Rhythms. 2018. PMID: 31236512 Free PMC article. Review. - In vivo tissue-specific chromatin profiling in Drosophila melanogaster using GFP-tagged nuclei.
Jauregui-Lozano J, Bakhle K, Weake VM. Jauregui-Lozano J, et al. Genetics. 2021 Jul 14;218(3):iyab079. doi: 10.1093/genetics/iyab079. Genetics. 2021. PMID: 34022041 Free PMC article.