tRNA genes as transcriptional repressor elements - PubMed (original) (raw)
tRNA genes as transcriptional repressor elements
M W Hull et al. Mol Cell Biol. 1994 Feb.
Abstract
Eukaryotic genomes frequently contain large numbers of repetitive RNA polymerase III (pol III) promoter elements interspersed between and within RNA pol II transcription units, and in several instances a regulatory relationship between the two types of promoter has been postulated. In the budding yeast Saccharomyces cerevisiae, tRNA genes are the only known interspersed pol III promoter-containing repetitive elements, and we find that they strongly inhibit transcription from adjacent pol II promoters in vivo. This inhibition requires active transcription of the upstream tRNA gene but is independent of its orientation and appears not to involve simple steric blockage of the pol II upstream activator sites. Evidence is presented that different pol II promoters can be repressed by different tRNA genes placed upstream at varied distances in both orientations. To test whether this phenomenon functions in naturally occurring instances in which tRNA genes and pol II promoters are juxtaposed, we examined the sigma and Ty3 elements. This class of retrotransposons is always found integrated immediately upstream of different tRNA genes. Weakening tRNA gene transcription by means of a temperature-sensitive mutation in RNA pol III increases the pheromone-inducible expression of sigma and Ty3 elements up to 60-fold.
Similar articles
- Adjacent pol II and pol III promoters: transcription of the yeast retrotransposon Ty3 and a target tRNA gene.
Kinsey PT, Sandmeyer SB. Kinsey PT, et al. Nucleic Acids Res. 1991 Mar 25;19(6):1317-24. doi: 10.1093/nar/19.6.1317. Nucleic Acids Res. 1991. PMID: 1851556 Free PMC article. - Transcriptional interactions between yeast tRNA genes, flanking genes and Ty elements: a genomic point of view.
Bolton EC, Boeke JD. Bolton EC, et al. Genome Res. 2003 Feb;13(2):254-63. doi: 10.1101/gr.612203. Genome Res. 2003. PMID: 12566403 Free PMC article. - RNA polymerase III catalysed transcription can be regulated in Saccharomyces cerevisiae by the bacterial tetracycline repressor-operator system.
Dingermann T, Frank-Stoll U, Werner H, Wissmann A, Hillen W, Jacquet M, Marschalek R. Dingermann T, et al. EMBO J. 1992 Apr;11(4):1487-92. doi: 10.1002/j.1460-2075.1992.tb05193.x. EMBO J. 1992. PMID: 1563352 Free PMC article. - Regulation of tRNA synthesis by the general transcription factors of RNA polymerase III - TFIIIB and TFIIIC, and by the MAF1 protein.
Graczyk D, Cieśla M, Boguta M. Graczyk D, et al. Biochim Biophys Acta Gene Regul Mech. 2018 Apr;1861(4):320-329. doi: 10.1016/j.bbagrm.2018.01.011. Epub 2018 Feb 6. Biochim Biophys Acta Gene Regul Mech. 2018. PMID: 29378333 Review. - Extra-transcriptional functions of RNA Polymerase III complexes: TFIIIC as a potential global chromatin bookmark.
Donze D. Donze D. Gene. 2012 Feb 10;493(2):169-75. doi: 10.1016/j.gene.2011.09.018. Epub 2011 Oct 1. Gene. 2012. PMID: 21986035 Review.
Cited by
- RNA polymerases reshape chromatin architecture and couple transcription on individual fibers.
Tullius TW, Isaac RS, Dubocanin D, Ranchalis J, Churchman LS, Stergachis AB. Tullius TW, et al. Mol Cell. 2024 Sep 5;84(17):3209-3222.e5. doi: 10.1016/j.molcel.2024.08.013. Epub 2024 Aug 26. Mol Cell. 2024. PMID: 39191261 - RNA polymerases reshape chromatin and coordinate transcription on individual fibers.
Tullius TW, Isaac RS, Ranchalis J, Dubocanin D, Churchman LS, Stergachis AB. Tullius TW, et al. bioRxiv [Preprint]. 2023 Dec 23:2023.12.22.573133. doi: 10.1101/2023.12.22.573133. bioRxiv. 2023. PMID: 38187631 Free PMC article. Updated. Preprint. - Consequences of a telomerase-related fitness defect and chromosome substitution technology in yeast synIX strains.
McCulloch LH, Sambasivam V, Hughes AL, Annaluru N, Ramalingam S, Fanfani V, Lobzaev E, Mitchell LA, Cai J; Build-A-Genome Class; Jiang H, LaCava J, Taylor MS, Bishai WR, Stracquadanio G, Steinmetz LM, Bader JS, Zhang W, Boeke JD, Chandrasegaran S. McCulloch LH, et al. Cell Genom. 2023 Nov 9;3(11):100419. doi: 10.1016/j.xgen.2023.100419. eCollection 2023 Nov 8. Cell Genom. 2023. PMID: 38020974 Free PMC article. - Regulatory networking of the three RNA polymerases helps the eukaryotic cells cope with environmental stress.
Bhargava P. Bhargava P. Curr Genet. 2021 Aug;67(4):595-603. doi: 10.1007/s00294-021-01179-y. Epub 2021 Mar 28. Curr Genet. 2021. PMID: 33778898 Review. - Light and shadow on the mechanisms of integration site selection in yeast Ty retrotransposon families.
Bonnet A, Lesage P. Bonnet A, et al. Curr Genet. 2021 Jun;67(3):347-357. doi: 10.1007/s00294-021-01154-7. Epub 2021 Feb 15. Curr Genet. 2021. PMID: 33590295 Review.
References
- Methods Enzymol. 1991;194:398-405 - PubMed
- Cell. 1992 Dec 11;71(6):1041-53 - PubMed
- Cell. 1992 Dec 11;71(6):1055-64 - PubMed
- Genes Dev. 1992 Dec;6(12A):2288-98 - PubMed
- Nucleic Acids Res. 1992 Dec 25;20(24):6451-4 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources