Effects of training in normoxia and normobaric hypoxia on human muscle ultrastructure - PubMed (original) (raw)
. 1993 Nov;425(3-4):263-7.
doi: 10.1007/BF00374176.
Affiliations
- PMID: 8309787
- DOI: 10.1007/BF00374176
Effects of training in normoxia and normobaric hypoxia on human muscle ultrastructure
D Desplanches et al. Pflugers Arch. 1993 Nov.
Abstract
The adaptive response of skeletal muscle to training in normoxia and in severe normobaric hypoxia was studied. The first group of five male subjects trained for 3 weeks on a bicycle (2 h/day, 6 days/week) in normoxia (Control training, Con T). A second group of five subjects trained in an ambient FIO2 decreasing progressively from 12.7% to a final level of 10.0% (hypoxic training, Hyp T). Fourteen months later, these subjects trained in normoxia at the same absolute power (normoxic training, Nor T). Peak oxygen consumption (VO2 max) was measured in normoxic and hypoxic conditions. Biopsies from the vastus lateralis muscle were analysed for fibre size, capillary and ultrastructural composition. Nor T had no effect on muscle tissue or VO2 max. Con T increased volume density of total mitochondria and lipids by 36 and 135% respectively (P < 0.05). Hyp T induced a 10% increase (P < 0.05) in peak VO2 max measured in hypoxia. Mean fibre cross-sectional area, interfibrillar mitochondrial volume density and capillary-to-fibre ratio were increased (P < 0.05) by 10, 42 and 13% respectively in the Hyp T group. These results suggest that training at the same relative workload in normoxia and hypoxia have similar, but not identical, effects on muscle tissue. If training in normoxia is carried out at the same absolute workload as in severe hypoxia, no significant effects are observed.
Similar articles
- Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle.
Ponsot E, Dufour SP, Zoll J, Doutrelau S, N'Guessan B, Geny B, Hoppeler H, Lampert E, Mettauer B, Ventura-Clapier R, Richard R. Ponsot E, et al. J Appl Physiol (1985). 2006 Apr;100(4):1249-57. doi: 10.1152/japplphysiol.00361.2005. Epub 2005 Dec 8. J Appl Physiol (1985). 2006. PMID: 16339351 Clinical Trial. - Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity.
Dufour SP, Ponsot E, Zoll J, Doutreleau S, Lonsdorfer-Wolf E, Geny B, Lampert E, Flück M, Hoppeler H, Billat V, Mettauer B, Richard R, Lonsdorfer J. Dufour SP, et al. J Appl Physiol (1985). 2006 Apr;100(4):1238-48. doi: 10.1152/japplphysiol.00742.2005. J Appl Physiol (1985). 2006. PMID: 16540709 Clinical Trial. - Effects of training in normoxia and normobaric hypoxia on time to exhaustion at the maximum rate of oxygen uptake.
Messonnier L, Geyssant A, Hintzy F, Lacour JR. Messonnier L, et al. Eur J Appl Physiol. 2004 Aug;92(4-5):470-6. doi: 10.1007/s00421-004-1117-2. Epub 2004 May 8. Eur J Appl Physiol. 2004. PMID: 15138836 Clinical Trial. - Sprint interval training in hypoxia stimulates glycolytic enzyme activity.
Puype J, Van Proeyen K, Raymackers JM, Deldicque L, Hespel P. Puype J, et al. Med Sci Sports Exerc. 2013 Nov;45(11):2166-74. doi: 10.1249/MSS.0b013e31829734ae. Med Sci Sports Exerc. 2013. PMID: 23604068 - Muscle tissue adaptations of high-altitude natives to training in chronic hypoxia or acute normoxia.
Desplanches D, Hoppeler H, Tüscher L, Mayet MH, Spielvogel H, Ferretti G, Kayser B, Leuenberger M, Grünenfelder A, Favier R. Desplanches D, et al. J Appl Physiol (1985). 1996 Nov;81(5):1946-51. doi: 10.1152/jappl.1996.81.5.1946. J Appl Physiol (1985). 1996. PMID: 8941514 Clinical Trial.
Cited by
- Mitochondrial function at extreme high altitude.
Murray AJ, Horscroft JA. Murray AJ, et al. J Physiol. 2016 Mar 1;594(5):1137-49. doi: 10.1113/JP270079. Epub 2015 Jun 26. J Physiol. 2016. PMID: 26033622 Free PMC article. Review. - The effects of altitude/hypoxic training on oxygen delivery capacity of the blood and aerobic exercise capacity in elite athletes - a meta-analysis.
Park HY, Hwang H, Park J, Lee S, Lim K. Park HY, et al. J Exerc Nutrition Biochem. 2016 Mar 31;20(1):15-22. doi: 10.20463/jenb.2016.03.20.1.3. J Exerc Nutrition Biochem. 2016. PMID: 27298808 Free PMC article. - Hypoxic training increases metabolic enzyme activity and composition of alpha-myosin heavy chain isoform in rat ventricular myocardium.
Cai MC, Huang QY, Liao WG, Wu Z, Liu FY, Gao YQ. Cai MC, et al. Eur J Appl Physiol. 2010 Jan;108(1):105-11. doi: 10.1007/s00421-009-1189-0. Epub 2009 Sep 16. Eur J Appl Physiol. 2010. PMID: 19756706 - Hypoxia refines plasticity of mitochondrial respiration to repeated muscle work.
Desplanches D, Amami M, Dupré-Aucouturier S, Valdivieso P, Schmutz S, Mueller M, Hoppeler H, Kreis R, Flück M. Desplanches D, et al. Eur J Appl Physiol. 2014 Feb;114(2):405-17. doi: 10.1007/s00421-013-2783-8. Epub 2013 Dec 11. Eur J Appl Physiol. 2014. PMID: 24327174 Free PMC article. - Diaphragm Muscle Adaptation to Sustained Hypoxia: Lessons from Animal Models with Relevance to High Altitude and Chronic Respiratory Diseases.
Lewis P, O'Halloran KD. Lewis P, et al. Front Physiol. 2016 Dec 12;7:623. doi: 10.3389/fphys.2016.00623. eCollection 2016. Front Physiol. 2016. PMID: 28018247 Free PMC article. Review.
References
- Int J Sports Med. 1990 Feb;11 Suppl 1:S10-4 - PubMed
- Eur J Appl Physiol Occup Physiol. 1985;54(4):355-62 - PubMed
- J Appl Physiol (1985). 1988 Dec;65(6):2592-7 - PubMed
- Acta Physiol Scand. 1977 Jan;99(1):91-7 - PubMed
- Int J Sports Med. 1990 Feb;11 Suppl 1:S21-6 - PubMed