Dimerization and the control of transcription by Krüppel - PubMed (original) (raw)
. 1993 Jul 29;364(6436):454-7.
doi: 10.1038/364454a0.
Affiliations
- PMID: 8332216
- DOI: 10.1038/364454a0
Dimerization and the control of transcription by Krüppel
F Sauer et al. Nature. 1993.
Abstract
Krüppel (KR), a Drosophila zinc finger-type transcription factor, can both activate and repress gene expression through interaction with a single DNA-binding site. The opposite regulatory effects of KR are concentration-dependent, and they require distinct portions of KR such as the N-terminal region for activation and the C-terminal region for repression. Here we show that KR is able to form homodimers through sequences located within the C terminus. When these sequences were fused to separated functional parts of the yeast transcription factor GAL4, they reconstituted a functional transcriptional activator on dimerization in vivo. Our results suggest that the KR monomer is a transcriptional activator. At higher concentration KR forms a homodimer and becomes a repressor that functions through the same target sequences as the activator.
Similar articles
- Selective repression of transcriptional activators at a distance by the Drosophila Krüppel protein.
Licht JD, Ro M, English MA, Grossel M, Hansen U. Licht JD, et al. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11361-5. doi: 10.1073/pnas.90.23.11361. Proc Natl Acad Sci U S A. 1993. PMID: 8248254 Free PMC article. - Concentration-dependent transcriptional activation or repression by Krüppel from a single binding site.
Sauer F, Jäckle H. Sauer F, et al. Nature. 1991 Oct 10;353(6344):563-6. doi: 10.1038/353563a0. Nature. 1991. PMID: 1922363 - Two evolutionarily conserved repression domains in the Drosophila Kruppel protein differ in activator specificity.
Hanna-Rose W, Licht JD, Hansen U. Hanna-Rose W, et al. Mol Cell Biol. 1997 Aug;17(8):4820-9. doi: 10.1128/MCB.17.8.4820. Mol Cell Biol. 1997. PMID: 9234738 Free PMC article. - Multifunctional DNA-binding proteins in yeast.
Doorenbosch T, Mager WH, Planta RJ. Doorenbosch T, et al. Gene Expr. 1992;2(3):193-201. Gene Expr. 1992. PMID: 1450661 Free PMC article. Review. No abstract available. - Krüppel-like factors: three fingers in many pies.
Bieker JJ. Bieker JJ. J Biol Chem. 2001 Sep 14;276(37):34355-8. doi: 10.1074/jbc.R100043200. Epub 2001 Jul 6. J Biol Chem. 2001. PMID: 11443140 Review. No abstract available.
Cited by
- Heterodimeric Drosophila gap gene protein complexes acting as transcriptional repressors.
Sauer F, Jäckle H. Sauer F, et al. EMBO J. 1995 Oct 2;14(19):4773-80. doi: 10.1002/j.1460-2075.1995.tb00159.x. EMBO J. 1995. PMID: 7588607 Free PMC article. - Analysis of functional importance of binding sites in the Drosophila gap gene network model.
Kozlov K, Gursky VV, Kulakovskiy IV, Dymova A, Samsonova M. Kozlov K, et al. BMC Genomics. 2015;16 Suppl 13(Suppl 13):S7. doi: 10.1186/1471-2164-16-S13-S7. Epub 2015 Dec 16. BMC Genomics. 2015. PMID: 26694511 Free PMC article. - Krüppel target gene knockout participates in the proper innervation of a specific set of Drosophila larval muscles.
Hartmann C, Landgraf M, Bate M, Jäckle H. Hartmann C, et al. EMBO J. 1997 Sep 1;16(17):5299-309. doi: 10.1093/emboj/16.17.5299. EMBO J. 1997. PMID: 9311990 Free PMC article. - Subunit interactions in the mariner transposase.
Lohe AR, Sullivan DT, Hartl DL. Lohe AR, et al. Genetics. 1996 Nov;144(3):1087-95. doi: 10.1093/genetics/144.3.1087. Genetics. 1996. PMID: 8913752 Free PMC article. - Negative regulation of transcription in eukaryotes.
Clark AR, Docherty K. Clark AR, et al. Biochem J. 1993 Dec 15;296 ( Pt 3)(Pt 3):521-41. doi: 10.1042/bj2960521. Biochem J. 1993. PMID: 8280048 Free PMC article. Review. No abstract available.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases