Functional consequences of a Na+ channel mutation causing hyperkalemic periodic paralysis - PubMed (original) (raw)
Functional consequences of a Na+ channel mutation causing hyperkalemic periodic paralysis
T R Cummins et al. Neuron. 1993 Apr.
Abstract
Hyperkalemic periodic paralysis (HYPP), one of several inheritable myotonic diseases, results from genetic defects in the human skeletal muscle Na+ channel. In some pedigrees, HYPP is correlated with a single base pair substitution resulting in a Met replacing Thr704 in the fifth transmembrane segment of the second domain. This region is totally conserved between the human and rat channels. We have introduced the human mutation into the corresponding region of the rat muscle Na+ channel cDNA and expressed it in human embryonic kidney 293 cells. Patch-clamp recordings show that this mutation shifts the voltage dependence of activation by 10-15 mV in the negative direction. The shift results in a persistent Na+ current that activates near -70 mV; this phenomenon could underlie the abnormal muscle activity observed in patients with HYPP.
Similar articles
- Sodium channel mutations in paramyotonia congenita and hyperkalemic periodic paralysis.
Ptacek LJ, Gouw L, Kwieciński H, McManis P, Mendell JR, Barohn RJ, George AL Jr, Barchi RL, Robertson M, Leppert MF. Ptacek LJ, et al. Ann Neurol. 1993 Mar;33(3):300-7. doi: 10.1002/ana.410330312. Ann Neurol. 1993. PMID: 8388676 - Hyperkalemic periodic paralysis M1592V mutation modifies activation in human skeletal muscle Na+ channel.
Rojas CV, Neely A, Velasco-Loyden G, Palma V, Kukuljan M. Rojas CV, et al. Am J Physiol. 1999 Jan;276(1):C259-66. doi: 10.1152/ajpcell.1999.276.1.C259. Am J Physiol. 1999. PMID: 9886942 - A novel sodium channel mutation causing a hyperkalemic paralytic and paramyotonic syndrome with variable clinical expressivity.
Wagner S, Lerche H, Mitrovic N, Heine R, George AL, Lehmann-Horn F. Wagner S, et al. Neurology. 1997 Oct;49(4):1018-25. doi: 10.1212/wnl.49.4.1018. Neurology. 1997. PMID: 9339683 - [HYPP--hyperkalemic periodic paralysis in horses].
Zeilmann M. Zeilmann M. Tierarztl Prax. 1993 Dec;21(6):524-7. Tierarztl Prax. 1993. PMID: 8122239 Review. German. - Molecular basis for hyperkalemic periodic paralysis.
Brown RH Jr. Brown RH Jr. Int J Neurol. 1991-1992;25-26:89-96. Int J Neurol. 1991. PMID: 11980067 Review.
Cited by
- Enhanced slow inactivation by V445M: a sodium channel mutation associated with myotonia.
Takahashi MP, Cannon SC. Takahashi MP, et al. Biophys J. 1999 Feb;76(2):861-8. doi: 10.1016/S0006-3495(99)77249-8. Biophys J. 1999. PMID: 9929487 Free PMC article. - Structure, function and expression of voltage-dependent sodium channels.
Kallen RG, Cohen SA, Barchi RL. Kallen RG, et al. Mol Neurobiol. 1993 Fall-Winter;7(3-4):383-428. doi: 10.1007/BF02769184. Mol Neurobiol. 1993. PMID: 8179845 Review. - N1366S mutation of human skeletal muscle sodium channel causes paramyotonia congenita.
Ke Q, Ye J, Tang S, Wang J, Luo B, Ji F, Zhang X, Yu Y, Cheng X, Li Y. Ke Q, et al. J Physiol. 2017 Nov 15;595(22):6837-6850. doi: 10.1113/JP274877. Epub 2017 Oct 15. J Physiol. 2017. PMID: 28940424 Free PMC article. - Mice with an NaV1.4 sodium channel null allele have latent myasthenia, without susceptibility to periodic paralysis.
Wu F, Mi W, Fu Y, Struyk A, Cannon SC. Wu F, et al. Brain. 2016 Jun;139(Pt 6):1688-99. doi: 10.1093/brain/aww070. Epub 2016 Apr 5. Brain. 2016. PMID: 27048647 Free PMC article. - A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons.
Rush AM, Dib-Hajj SD, Liu S, Cummins TR, Black JA, Waxman SG. Rush AM, et al. Proc Natl Acad Sci U S A. 2006 May 23;103(21):8245-50. doi: 10.1073/pnas.0602813103. Epub 2006 May 15. Proc Natl Acad Sci U S A. 2006. PMID: 16702558 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous