Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function - PubMed (original) (raw)

Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function

S E Kahn et al. Diabetes. 1993 Nov.

Abstract

To determine the relationship between insulin sensitivity and beta-cell function, we quantified the insulin sensitivity index using the minimal model in 93 relatively young, apparently healthy human subjects of varying degrees of obesity (55 male, 38 female; 18-44 yr of age; body mass index 19.5-52.2 kg/m2) and with fasting glucose levels < 6.4 mM. SI was compared with measures of body adiposity and beta-cell function. Although lean individuals showed a wide range of SI, body mass index and SI were related in a curvilinear manner (P < 0.0001) so that on average, an increase in body mass index was associated generally with a lower value for SI. The relationship between the SI and the beta-cell measures was more clearly curvilinear and reciprocal for fasting insulin (P < 0.0001), first-phase insulin response (AIRglucose; P < 0.0001), glucose potentiation slope (n = 56; P < 0.005), and beta-cell secretory capacity (AIRmax; n = 43; P < 0.0001). The curvilinear relationship between SI and the beta-cell measures could not be distinguished from a hyperbola, i.e., SI x beta-cell function = constant. This hyperbolic relationship described the data significantly better than a linear function (P < 0.05). The nature of this relationship is consistent with a regulated feedback loop control system such that for any difference in SI, a proportionate reciprocal difference occurs in insulin levels and responses in subjects with similar carbohydrate tolerance. We conclude that in human subjects with normal glucose tolerance and varying degrees of obesity, beta-cell function varies quantitatively with differences in insulin sensitivity.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources