Human ERCC5 cDNA-cosmid complementation for excision repair and bipartite amino acid domains conserved with RAD proteins of Saccharomyces cerevisiae and Schizosaccharomyces pombe - PubMed (original) (raw)
Human ERCC5 cDNA-cosmid complementation for excision repair and bipartite amino acid domains conserved with RAD proteins of Saccharomyces cerevisiae and Schizosaccharomyces pombe
M A MacInnes et al. Mol Cell Biol. 1993 Oct.
Abstract
Several human genes related to DNA excision repair (ER) have been isolated via ER cross-species complementation (ERCC) of UV-sensitive CHO cells. We have now isolated and characterized cDNAs for the human ERCC5 gene that complement CHO UV135 cells. The ERCC5 mRNA size is about 4.6 kb. Our available cDNA clones are partial length, and no single clone was active for UV135 complementation. When cDNAs were mixed pairwise with a cosmid clone containing an overlapping 5'-end segment of the ERCC5 gene, DNA transfer produced UV-resistant colonies with 60 to 95% correction of UV resistance relative to either a genomic ERCC5 DNA transformant or the CHO AA8 progenitor cells. cDNA-cosmid transformants regained intermediate levels (20 to 45%) of ER-dependent reactivation of a UV-damaged pSVCATgpt reporter plasmid. Our evidence strongly implicates an in situ recombination mechanism in cDNA-cosmid complementation for ER. The complete deduced amino acid sequence of ERCC5 was reconstructed from several cDNA clones encoding a predicted protein of 1,186 amino acids. The ERCC5 protein has extensive sequence similarities, in bipartite domains A and B, to products of RAD repair genes of two yeasts, Saccharomyces cerevisiae RAD2 and Schizosaccharomyces pombe rad13. Sequence, structural, and functional data taken together indicate that ERCC5 and its relatives are probable functional homologs. A second locus represented by S. cerevisiae YKL510 and S. pombe rad2 genes is structurally distinct from the ERCC5 locus but retains vestigial A and B domain similarities. Our analyses suggest that ERCC5 is a nuclear-localized protein with one or more highly conserved helix-loop-helix segments within domains A and B.
Similar articles
- An ERCC5 gene with homology to yeast RAD2 is involved in group G xeroderma pigmentosum.
Shiomi T, Harada Y, Saito T, Shiomi N, Okuno Y, Yamaizumi M. Shiomi T, et al. Mutat Res. 1994 Mar;314(2):167-75. doi: 10.1016/0921-8777(94)90080-9. Mutat Res. 1994. PMID: 7510366 - ERCC4 (XPF) encodes a human nucleotide excision repair protein with eukaryotic recombination homologs.
Brookman KW, Lamerdin JE, Thelen MP, Hwang M, Reardon JT, Sancar A, Zhou ZQ, Walter CA, Parris CN, Thompson LH. Brookman KW, et al. Mol Cell Biol. 1996 Nov;16(11):6553-62. doi: 10.1128/MCB.16.11.6553. Mol Cell Biol. 1996. PMID: 8887684 Free PMC article. - Cloning of Schizosaccharomyces pombe rph16+, a gene homologous to the Saccharomyces cerevisiae RAD16 gene.
Bang DD, Ketting R, de Ruijter M, Brandsma JA, Verhage RA, van de Putte P, Brouwer J. Bang DD, et al. Mutat Res. 1996 Oct 18;364(2):57-71. doi: 10.1016/0921-8777(96)00010-9. Mutat Res. 1996. PMID: 8879272 - Molecular biology of DNA repair in the fission yeast Schizosaccharomyces pombe.
Lehmann AR. Lehmann AR. Mutat Res. 1996 Aug 8;363(3):147-61. doi: 10.1016/0921-8777(96)00017-1. Mutat Res. 1996. PMID: 8765156 Review. No abstract available. - Repair of UV damage in the fission yeast Schizosaccharomyces pombe.
McCready SJ, Osman1 F, Yasui A. McCready SJ, et al. Mutat Res. 2000 Jun 30;451(1-2):197-210. doi: 10.1016/s0027-5107(00)00050-6. Mutat Res. 2000. PMID: 10915873 Review.
Cited by
- Global contributions to the understanding of DNA repair and skin cancer.
Kraemer KH, DiGiovanna JJ. Kraemer KH, et al. J Invest Dermatol. 2014 Oct 10;134(e1):E8-17. doi: 10.1038/skinbio.2014.3. J Invest Dermatol. 2014. PMID: 25302472 Free PMC article. Review. No abstract available. - Stochastic and reversible assembly of a multiprotein DNA repair complex ensures accurate target site recognition and efficient repair.
Luijsterburg MS, von Bornstaedt G, Gourdin AM, Politi AZ, Moné MJ, Warmerdam DO, Goedhart J, Vermeulen W, van Driel R, Höfer T. Luijsterburg MS, et al. J Cell Biol. 2010 May 3;189(3):445-63. doi: 10.1083/jcb.200909175. J Cell Biol. 2010. PMID: 20439997 Free PMC article. - XPG: its products and biological roles.
Schärer OD. Schärer OD. Adv Exp Med Biol. 2008;637:83-92. doi: 10.1007/978-0-387-09599-8_9. Adv Exp Med Biol. 2008. PMID: 19181113 Free PMC article. Review. - Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced dna damage depends on functional TFIIH.
Zotter A, Luijsterburg MS, Warmerdam DO, Ibrahim S, Nigg A, van Cappellen WA, Hoeijmakers JH, van Driel R, Vermeulen W, Houtsmuller AB. Zotter A, et al. Mol Cell Biol. 2006 Dec;26(23):8868-79. doi: 10.1128/MCB.00695-06. Epub 2006 Sep 25. Mol Cell Biol. 2006. PMID: 17000769 Free PMC article. - The human XPG gene: gene architecture, alternative splicing and single nucleotide polymorphisms.
Emmert S, Schneider TD, Khan SG, Kraemer KH. Emmert S, et al. Nucleic Acids Res. 2001 Apr 1;29(7):1443-52. doi: 10.1093/nar/29.7.1443. Nucleic Acids Res. 2001. PMID: 11266544 Free PMC article.
References
- Proc Natl Acad Sci U S A. 1989 Jul;86(14):5512-6 - PubMed
- Mol Cell Biol. 1993 Feb;13(2):970-6 - PubMed
- Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1614-8 - PubMed
- Lab Invest. 1989 Aug;61(2):143-61 - PubMed
- Mutagenesis. 1989 Sep;4(5):349-54 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous