Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell - PubMed (original) (raw)
Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell
T Byk et al. Proc Natl Acad Sci U S A. 1993.
Abstract
Excitation of fly photoreceptor cells is initiated by photoisomerization of rhodopsin to the active form of metarhodopsin. Fly metarhodopsin is thermostable, does not bleach, and does not regenerate spontaneously to rhodopsin. For this reason, the activity of metarhodopsin must be stopped by an effective termination reaction. On the other hand, there is also a need to restore the inactivated photopigment to an excitable state in order to keep a sufficient number of photopigment molecules available for excitation. The following findings reveal how these demands are met. The photopigment undergoes rapid phosphorylation upon photoconversion of rhodopsin to metarhodopsin and an efficient Ca2+ dependent dephosphorylation upon regeneration of metarhodopsin to rhodopsin. Phosphorylation decreases the ability of metarhodopsin to activate the guanine nucleotide-binding protein. Binding of 49-kDa arrestin further quenches the activity of metarhodopsin and protects it from dephosphorylation. Light-dependent binding and release of 49-kDa arrestin from metarhodopsin- and rhodopsin-containing membranes, respectively, directs the dephosphorylation reaction toward rhodopsin. This ensures the return of phosphorylated metarhodopsin to the rhodopsin pool without initiating transduction in the dark. Assays of rhodopsin dephosphorylation in the Drosophila retinal degeneration C (rdgC) mutant, a mutant in a gene previously cloned and predicted to encode a serine/threonine protein phosphatase, reveal that phosphorylated rhodopsin is a major substrate for the rdgC phosphatase. We propose that mutations resulting in either a decrease or an improper regulation of rhodopsin phosphatase activity bring about degeneration of the fly photoreceptor cells.
Similar articles
- Mechanism of arrestin 2 function in rhabdomeric photoreceptors.
Plangger A, Malicki D, Whitney M, Paulsen R. Plangger A, et al. J Biol Chem. 1994 Oct 28;269(43):26969-75. J Biol Chem. 1994. PMID: 7929436 - The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system.
Robinson KA, Ou WL, Guan X, Sugamori KS, Bandyopadhyay A, Ernst OP, Mitchell J. Robinson KA, et al. J Neurochem. 2015 Dec;135(6):1129-39. doi: 10.1111/jnc.13366. Epub 2015 Oct 28. J Neurochem. 2015. PMID: 26375013 - Activation and regeneration of rhodopsin in the insect visual cycle.
Kiselev A, Subramaniam S. Kiselev A, et al. Science. 1994 Nov 25;266(5189):1369-73. doi: 10.1126/science.7973725. Science. 1994. PMID: 7973725 - Signal transduction in the visual system of Drosophila.
Smith DP, Stamnes MA, Zuker CS. Smith DP, et al. Annu Rev Cell Biol. 1991;7:161-90. doi: 10.1146/annurev.cb.07.110191.001113. Annu Rev Cell Biol. 1991. PMID: 1725599 Review. No abstract available. - Phototransduction and retinal degeneration in Drosophila.
Wang T, Montell C. Wang T, et al. Pflugers Arch. 2007 Aug;454(5):821-47. doi: 10.1007/s00424-007-0251-1. Epub 2007 May 9. Pflugers Arch. 2007. PMID: 17487503 Review.
Cited by
- Ectopic Expression of Mouse Melanopsin in Drosophila Photoreceptors Reveals Fast Response Kinetics and Persistent Dark Excitation.
Yasin B, Kohn E, Peters M, Zaguri R, Weiss S, Schopf K, Katz B, Huber A, Minke B. Yasin B, et al. J Biol Chem. 2017 Mar 3;292(9):3624-3636. doi: 10.1074/jbc.M116.754770. Epub 2017 Jan 24. J Biol Chem. 2017. PMID: 28119450 Free PMC article. - In vivo identification of Drosophila rhodopsin interaction partners by biotin proximity labeling.
Feizy N, Leuchtenberg SF, Steiner C, Würtz B, Fliegner L, Huber A. Feizy N, et al. Sci Rep. 2024 Jan 23;14(1):1986. doi: 10.1038/s41598-024-52041-3. Sci Rep. 2024. PMID: 38263196 Free PMC article. - Novel dominant rhodopsin mutation triggers two mechanisms of retinal degeneration and photoreceptor desensitization.
Iakhine R, Chorna-Ornan I, Zars T, Elia N, Cheng Y, Selinger Z, Minke B, Hyde DR. Iakhine R, et al. J Neurosci. 2004 Mar 10;24(10):2516-26. doi: 10.1523/JNEUROSCI.5426-03.2004. J Neurosci. 2004. PMID: 15014127 Free PMC article. - C. elegans PPEF-type phosphatase (Retinal degeneration C ortholog) functions in diverse classes of cilia to regulate nematode behaviors.
Barbelanne M, Lu Y, Kumar K, Zhang X, Li C, Park K, Warner A, Xu XZS, Shaham S, Leroux MR. Barbelanne M, et al. Sci Rep. 2024 Nov 16;14(1):28347. doi: 10.1038/s41598-024-79057-z. Sci Rep. 2024. PMID: 39550471 Free PMC article. - Calmodulin binding to Drosophila NinaC required for termination of phototransduction.
Porter JA, Minke B, Montell C. Porter JA, et al. EMBO J. 1995 Sep 15;14(18):4450-9. doi: 10.1002/j.1460-2075.1995.tb00124.x. EMBO J. 1995. PMID: 7556088 Free PMC article.
References
- Neuron. 1992 Jan;8(1):117-26 - PubMed
- Proc Natl Acad Sci U S A. 1990 Feb;87(3):1008-12 - PubMed
- Proc Natl Acad Sci U S A. 1986 Mar;83(5):1174-8 - PubMed
- Nature. 1970 Aug 15;227(5259):680-5 - PubMed
- Neuron. 1992 Apr;8(4):643-51 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous