Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell - PubMed (original) (raw)
Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell
T Byk et al. Proc Natl Acad Sci U S A. 1993.
Abstract
Excitation of fly photoreceptor cells is initiated by photoisomerization of rhodopsin to the active form of metarhodopsin. Fly metarhodopsin is thermostable, does not bleach, and does not regenerate spontaneously to rhodopsin. For this reason, the activity of metarhodopsin must be stopped by an effective termination reaction. On the other hand, there is also a need to restore the inactivated photopigment to an excitable state in order to keep a sufficient number of photopigment molecules available for excitation. The following findings reveal how these demands are met. The photopigment undergoes rapid phosphorylation upon photoconversion of rhodopsin to metarhodopsin and an efficient Ca2+ dependent dephosphorylation upon regeneration of metarhodopsin to rhodopsin. Phosphorylation decreases the ability of metarhodopsin to activate the guanine nucleotide-binding protein. Binding of 49-kDa arrestin further quenches the activity of metarhodopsin and protects it from dephosphorylation. Light-dependent binding and release of 49-kDa arrestin from metarhodopsin- and rhodopsin-containing membranes, respectively, directs the dephosphorylation reaction toward rhodopsin. This ensures the return of phosphorylated metarhodopsin to the rhodopsin pool without initiating transduction in the dark. Assays of rhodopsin dephosphorylation in the Drosophila retinal degeneration C (rdgC) mutant, a mutant in a gene previously cloned and predicted to encode a serine/threonine protein phosphatase, reveal that phosphorylated rhodopsin is a major substrate for the rdgC phosphatase. We propose that mutations resulting in either a decrease or an improper regulation of rhodopsin phosphatase activity bring about degeneration of the fly photoreceptor cells.
Similar articles
- Mechanism of arrestin 2 function in rhabdomeric photoreceptors.
Plangger A, Malicki D, Whitney M, Paulsen R. Plangger A, et al. J Biol Chem. 1994 Oct 28;269(43):26969-75. J Biol Chem. 1994. PMID: 7929436 - The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system.
Robinson KA, Ou WL, Guan X, Sugamori KS, Bandyopadhyay A, Ernst OP, Mitchell J. Robinson KA, et al. J Neurochem. 2015 Dec;135(6):1129-39. doi: 10.1111/jnc.13366. Epub 2015 Oct 28. J Neurochem. 2015. PMID: 26375013 - Activation and regeneration of rhodopsin in the insect visual cycle.
Kiselev A, Subramaniam S. Kiselev A, et al. Science. 1994 Nov 25;266(5189):1369-73. doi: 10.1126/science.7973725. Science. 1994. PMID: 7973725 - Signal transduction in the visual system of Drosophila.
Smith DP, Stamnes MA, Zuker CS. Smith DP, et al. Annu Rev Cell Biol. 1991;7:161-90. doi: 10.1146/annurev.cb.07.110191.001113. Annu Rev Cell Biol. 1991. PMID: 1725599 Review. No abstract available. - Phototransduction and retinal degeneration in Drosophila.
Wang T, Montell C. Wang T, et al. Pflugers Arch. 2007 Aug;454(5):821-47. doi: 10.1007/s00424-007-0251-1. Epub 2007 May 9. Pflugers Arch. 2007. PMID: 17487503 Review.
Cited by
- Wind gates olfaction-driven search states in free flight.
Stupski SD, van Breugel F. Stupski SD, et al. Curr Biol. 2024 Oct 7;34(19):4397-4411.e6. doi: 10.1016/j.cub.2024.07.009. Epub 2024 Jul 26. Curr Biol. 2024. PMID: 39067453 - Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking.
Takagi S, Sancer G, Abuin L, Stupski SD, Roman Arguello J, Prieto-Godino LL, Stern DL, Cruchet S, Álvarez-Ocaña R, Wienecke CFR, van Breugel F, Jeanne JM, Auer TO, Benton R. Takagi S, et al. Nat Commun. 2024 Aug 15;15(1):7041. doi: 10.1038/s41467-024-50808-w. Nat Commun. 2024. PMID: 39147786 Free PMC article. - PPEF/PP7 protein Ser/Thr phosphatases.
Andreeva AV, Kutuzov MA. Andreeva AV, et al. Cell Mol Life Sci. 2009 Oct;66(19):3103-10. doi: 10.1007/s00018-009-0110-7. Epub 2009 Aug 7. Cell Mol Life Sci. 2009. PMID: 19662497 Free PMC article. Review. - Gene duplication and the origins of morphological complexity in pancrustacean eyes, a genomic approach.
Rivera AS, Pankey MS, Plachetzki DC, Villacorta C, Syme AE, Serb JM, Omilian AR, Oakley TH. Rivera AS, et al. BMC Evol Biol. 2010 Apr 30;10:123. doi: 10.1186/1471-2148-10-123. BMC Evol Biol. 2010. PMID: 20433736 Free PMC article. - Sustained Melanopsin Photoresponse Is Supported by Specific Roles of β-Arrestin 1 and 2 in Deactivation and Regeneration of Photopigment.
Mure LS, Hatori M, Ruda K, Benegiamo G, Demas J, Panda S. Mure LS, et al. Cell Rep. 2018 Nov 27;25(9):2497-2509.e4. doi: 10.1016/j.celrep.2018.11.008. Cell Rep. 2018. PMID: 30485815 Free PMC article.
References
- Neuron. 1992 Jan;8(1):117-26 - PubMed
- Proc Natl Acad Sci U S A. 1990 Feb;87(3):1008-12 - PubMed
- Proc Natl Acad Sci U S A. 1986 Mar;83(5):1174-8 - PubMed
- Nature. 1970 Aug 15;227(5259):680-5 - PubMed
- Neuron. 1992 Apr;8(4):643-51 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous