Rapid synchronization through fast threshold modulation - PubMed (original) (raw)
Rapid synchronization through fast threshold modulation
D Somers et al. Biol Cybern. 1993.
Abstract
Synchronization properties of locally coupled neural oscillators were investigated analytically and by computer simulation. When coupled in a manner that mimics excitatory chemical synapses, oscillators having more than one time scale (relaxation oscillators) are shown to approach synchrony using mechanisms very different from that of oscillators with a more sinusoidal waveform. The relaxation oscillators make critical use of fast modulations of their thresholds, leading to a rate of synchronization relatively independent of coupling strength within some basin of attraction; this rate is faster for oscillators that have conductance-based features than for neural caricatures such as the FitzHugh-Nagumo equations that lack such features. Computer simulations of one-dimensional arrays show that oscillators in the relaxation regime synchronize much more rapidly than oscillators with the same equations whose parameters have been modulated to yield a more sinusoidal waveform. We present a heuristic explanation of this effect based on properties of the coupling mechanisms that can affect the way the synchronization scales with array length. These results suggest that the emergent synchronization behavior of oscillating neural networks can be dramatically influenced by the intrinsic properties of the network components. Possible implications for perceptual feature binding and attention are discussed.
Similar articles
- Control of transient synchronization with external stimuli.
Ciszak M, Montina A, Arecchi FT. Ciszak M, et al. Chaos. 2009 Mar;19(1):015104. doi: 10.1063/1.3080195. Chaos. 2009. PMID: 19335008 - Impulsive synchronization of coupled dynamical networks with nonidentical Duffing oscillators and coupling delays.
Wang Z, Duan Z, Cao J. Wang Z, et al. Chaos. 2012 Mar;22(1):013140. doi: 10.1063/1.3692971. Chaos. 2012. PMID: 22463016 - Amplitude dynamics favors synchronization in complex networks.
Gambuzza LV, Gómez-Gardeñes J, Frasca M. Gambuzza LV, et al. Sci Rep. 2016 Apr 25;6:24915. doi: 10.1038/srep24915. Sci Rep. 2016. PMID: 27108847 Free PMC article. - Complex partial synchronization patterns in networks of delay-coupled neurons.
Nikitin D, Omelchenko I, Zakharova A, Avetyan M, Fradkov AL, Schöll E. Nikitin D, et al. Philos Trans A Math Phys Eng Sci. 2019 Sep 9;377(2153):20180128. doi: 10.1098/rsta.2018.0128. Epub 2019 Jul 22. Philos Trans A Math Phys Eng Sci. 2019. PMID: 31329071 Free PMC article. - Modeling of a neural pattern generator with coupled nonlinear oscillators.
Bay JS, Hemami H. Bay JS, et al. IEEE Trans Biomed Eng. 1987 Apr;34(4):297-306. doi: 10.1109/tbme.1987.326091. IEEE Trans Biomed Eng. 1987. PMID: 3332778 Review. No abstract available.
Cited by
- Dynamics of high-frequency synchronization during seizures.
Krishnan GP, Filatov G, Bazhenov M. Krishnan GP, et al. J Neurophysiol. 2013 May;109(10):2423-37. doi: 10.1152/jn.00761.2012. Epub 2013 Feb 20. J Neurophysiol. 2013. PMID: 23427308 Free PMC article. - Calcium and Metabolic Oscillations in Pancreatic Islets: Who's Driving the Bus?*.
Watts M, Fendler B, Merrins MJ, Satin LS, Bertram R, Sherman A. Watts M, et al. SIAM J Appl Dyn Syst. 2014;13(2):683-703. doi: 10.1137/130920198. SIAM J Appl Dyn Syst. 2014. PMID: 25698909 Free PMC article. - Detecting effective connectivity in networks of coupled neuronal oscillators.
Boykin ER, Khargonekar PP, Carney PR, Ogle WO, Talathi SS. Boykin ER, et al. J Comput Neurosci. 2012 Jun;32(3):521-38. doi: 10.1007/s10827-011-0367-3. Epub 2011 Oct 14. J Comput Neurosci. 2012. PMID: 21997131 - On the derivation and tuning of phase oscillator models for lamprey central pattern generators.
Várkonyi PL, Kiemel T, Hoffman K, Cohen AH, Holmes P. Várkonyi PL, et al. J Comput Neurosci. 2008 Oct;25(2):245-61. doi: 10.1007/s10827-008-0076-8. Epub 2008 Feb 12. J Comput Neurosci. 2008. PMID: 18266097 - Anti-phase solutions in relaxation oscillators coupled through excitatory interactions.
Kopell N, Somers D. Kopell N, et al. J Math Biol. 1995;33(3):261-80. doi: 10.1007/BF00169564. J Math Biol. 1995. PMID: 7897329
References
- Biol Cybern. 1986;54(1):29-40 - PubMed
- Biol Cybern. 1990;64(1):83-5 - PubMed
- Biol Cybern. 1976 Aug 30;23(4):187-202 - PubMed
- Proc Natl Acad Sci U S A. 1990 Sep;87(18):7200-4 - PubMed
- Biol Cybern. 1988;58(2):81-9 - PubMed