Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles - PubMed (original) (raw)
Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles
A H Kaplan et al. J Virol. 1993 Jul.
Abstract
The production of infectious particles by human immunodeficiency virus type 1 is dependent on the accurate cleavage of its Gag and Gag/Pol precursors by a virally encoded protease. In the absence of protease activity, morphologically abnormal particles which are noninfectious are formed. Recently, inhibitors of the protease of human immunodeficiency virus type 1 have been developed as potential therapeutic agents. We have examined the basis for the loss of infectivity at the limiting inhibitor concentrations that are likely to be achieved in clinical settings. We found that subtle defects in processing are correlated with profound deficits in infectivity. Further, we correlated this partially disrupted processing with an altered virion morphology. These data suggest that accurate and complete processing is essential to the formation of infectious, morphologically normal virions and that the pathway by which these precursors are processed and assembled is sensitive to partial inhibition of the protease by an inhibitor disproportionate to the effect of the inhibitor on the viral protease itself.
Similar articles
- Removal of human immunodeficiency virus type 1 (HIV-1) protease inhibitors from preparations of immature HIV-1 virions does not result in an increase in infectivity or the appearance of mature morphology.
Humphrey RW, Ohagen A, Davis DA, Fukazawa T, Hayashi H, Höglund S, Mitsuya H, Yarchoan R. Humphrey RW, et al. Antimicrob Agents Chemother. 1997 May;41(5):1017-23. doi: 10.1128/AAC.41.5.1017. Antimicrob Agents Chemother. 1997. PMID: 9145862 Free PMC article. - An inhibitor of the protease blocks maturation of human and simian immunodeficiency viruses and spread of infection.
Ashorn P, McQuade TJ, Thaisrivongs S, Tomasselli AG, Tarpley WG, Moss B. Ashorn P, et al. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7472-6. doi: 10.1073/pnas.87.19.7472. Proc Natl Acad Sci U S A. 1990. PMID: 2217178 Free PMC article. - Maturation of human immunodeficiency virus particles assembled from the gag precursor protein requires in situ processing by gag-pol protease.
Ross EK, Fuerst TR, Orenstein JM, O'Neill T, Martin MA, Venkatesan S. Ross EK, et al. AIDS Res Hum Retroviruses. 1991 May;7(5):475-83. doi: 10.1089/aid.1991.7.475. AIDS Res Hum Retroviruses. 1991. PMID: 1873082 - HIV-1 evolution under pressure of protease inhibitors: climbing the stairs of viral fitness.
Berkhout B. Berkhout B. J Biomed Sci. 1999 Sep-Oct;6(5):298-305. doi: 10.1007/BF02253518. J Biomed Sci. 1999. PMID: 10494036 Review. - Marketed nonsteroidal anti-inflammatory agents, antihypertensives, and human immunodeficiency virus protease inhibitors: as-yet-unused weapons of the oncologists' arsenal.
Papanagnou P, Baltopoulos P, Tsironi M. Papanagnou P, et al. Ther Clin Risk Manag. 2015 May 18;11:807-19. doi: 10.2147/TCRM.S82049. eCollection 2015. Ther Clin Risk Manag. 2015. PMID: 26056460 Free PMC article. Review.
Cited by
- Application of ultrasensitive digital ELISA for p24 enables improved evaluation of HIV-1 reservoir diversity and growth kinetics in viral outgrowth assays.
Kuzmichev YV, Lackman-Smith C, Bakkour S, Wiegand A, Bale MJ, Musick A, Bernstein W, Aronson N, Ake J, Tovanabutra S, Stone M, Ptak RG, Kearney MF, Busch MP, Wonderlich ER, Kulpa DA. Kuzmichev YV, et al. Sci Rep. 2023 Jul 6;13(1):10958. doi: 10.1038/s41598-023-37223-9. Sci Rep. 2023. PMID: 37414788 Free PMC article. - Neutral sphingomyelinase 2 is required for HIV-1 maturation.
Waheed AA, Zhu Y, Agostino E, Naing L, Hikichi Y, Soheilian F, Yoo SW, Song Y, Zhang P, Slusher BS, Haughey NJ, Freed EO. Waheed AA, et al. Proc Natl Acad Sci U S A. 2023 Jul 11;120(28):e2219475120. doi: 10.1073/pnas.2219475120. Epub 2023 Jul 5. Proc Natl Acad Sci U S A. 2023. PMID: 37406093 Free PMC article. - Discovery of Novel HIV Protease Inhibitors Using Modern Computational Techniques.
Okafor SN, Angsantikul P, Ahmed H. Okafor SN, et al. Int J Mol Sci. 2022 Oct 12;23(20):12149. doi: 10.3390/ijms232012149. Int J Mol Sci. 2022. PMID: 36293006 Free PMC article. - HIV protease inhibitors Nelfinavir and Lopinavir/Ritonavir markedly improve lung pathology in SARS-CoV-2-infected Syrian hamsters despite lack of an antiviral effect.
Foo CS, Abdelnabi R, Kaptein SJF, Zhang X, Ter Horst S, Mols R, Delang L, Rocha-Pereira J, Coelmont L, Leyssen P, Dallmeier K, Vergote V, Heylen E, Vangeel L, Chatterjee AK, Annaert PP, Augustijns PF, De Jonghe S, Jochmans D, Gouwy M, Cambier S, Vandooren J, Proost P, van Laer C, Weynand B, Neyts J. Foo CS, et al. Antiviral Res. 2022 Jun;202:105311. doi: 10.1016/j.antiviral.2022.105311. Epub 2022 Apr 4. Antiviral Res. 2022. PMID: 35390430 Free PMC article. - Analyses of HIV proteases variants at the threshold of viability reveals relationships between processing efficiency and fitness.
Schneider-Nachum G, Flynn J, Mavor D, Schiffer CA, Bolon DNA. Schneider-Nachum G, et al. Virus Evol. 2021 Dec 14;7(2):veab103. doi: 10.1093/ve/veab103. eCollection 2021 Sep. Virus Evol. 2021. PMID: 35299788 Free PMC article.
References
- J Virol. 1985 Mar;53(3):899-907 - PubMed
- Antimicrob Agents Chemother. 1991 Nov;35(11):2209-14 - PubMed
- Proc Natl Acad Sci U S A. 1986 Oct;83(19):7246-50 - PubMed
- Virology. 1987 Jan;156(1):171-6 - PubMed
- Science. 1987 May 15;236(4803):819-22 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources