Cloning and sequence of the SCS2 gene, which can suppress the defect of INO1 expression in an inositol auxotrophic mutant of Saccharomyces cerevisiae - PubMed (original) (raw)
Cloning and sequence of the SCS2 gene, which can suppress the defect of INO1 expression in an inositol auxotrophic mutant of Saccharomyces cerevisiae
J Nikawa et al. J Biochem. 1995 Jul.
Free article
Abstract
Saccharomyces cerevisiae ire15 mutant has a defect in the expression of INO1, showing the inositol auxotrophic phenotype [Nikawa, J. (1994) Gene 149, 367-372]. We have isolated five yeast genes which suppress the ire15 mutation in multiple copies by genetic complementation. Among them, one gene, designated as SCS2, also suppressed the choline-sensitive dominant mutation, CSE1 [Hosaka, K. et al. (1992) J. Biochem. 111, 352-358]. The CSE1 mutation is not allelic to ire15. Sequencing analysis revealed that the SCS2 gene encodes 244 amino acid residues with a calculated molecular mass of 26,866. INO2/SCS1, which is another suppressor gene for CSE1 and is known to be a positive factor for INO1 expression, also suppressed the growth defect of the ire15 mutant. These results clearly indicate that the ire15 and CSE1 mutations genetically interact and the SCS2 and INO2/SCS1 genes are involved in the regulation of INO1 expression.
Similar articles
- Cloning and characterization of the SCS1 gene required for the expression of genes in yeast phospholipid synthesis.
Hosaka K, Nikawa J, Kodaki T, Yamashita S. Hosaka K, et al. J Biochem. 1994 Jan;115(1):131-6. doi: 10.1093/oxfordjournals.jbchem.a124287. J Biochem. 1994. PMID: 8188619 - Suppression of the Saccharomyces cerevisiae hac1/ire15 mutation by yeast genes and human cDNAs.
Nikawa J, Sugiyama M, Hayashi K, Nakashima A. Nikawa J, et al. Gene. 1997 Nov 12;201(1-2):5-10. doi: 10.1016/s0378-1119(97)00418-6. Gene. 1997. PMID: 9409765 - Regulation of 1D-myo-inositol-3-phosphate synthase in yeast.
Nunez LR, Henry SA. Nunez LR, et al. Subcell Biochem. 2006;39:135-56. doi: 10.1007/0-387-27600-9_6. Subcell Biochem. 2006. PMID: 17121274 Review. No abstract available. - FAR-reaching discoveries about the regulation of START.
Nasmyth KA. Nasmyth KA. Cell. 1990 Dec 21;63(6):1117-20. doi: 10.1016/0092-8674(90)90404-3. Cell. 1990. PMID: 2261635 Review. No abstract available.
Cited by
- Crystal Structure of the Epo1-Bem3 Complex for Bud Growth.
Wang J, Li L, Ming Z, Wu L, Yan L. Wang J, et al. Int J Mol Sci. 2021 Apr 7;22(8):3812. doi: 10.3390/ijms22083812. Int J Mol Sci. 2021. PMID: 33917059 Free PMC article. - Mouse VAP33 is associated with the endoplasmic reticulum and microtubules.
Skehel PA, Fabian-Fine R, Kandel ER. Skehel PA, et al. Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1101-6. doi: 10.1073/pnas.97.3.1101. Proc Natl Acad Sci U S A. 2000. PMID: 10655491 Free PMC article. - Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae.
Henry SA, Kohlwein SD, Carman GM. Henry SA, et al. Genetics. 2012 Feb;190(2):317-49. doi: 10.1534/genetics.111.130286. Genetics. 2012. PMID: 22345606 Free PMC article. Review. - ERG30, a VAP-33-related protein, functions in protein transport mediated by COPI vesicles.
Soussan L, Burakov D, Daniels MP, Toister-Achituv M, Porat A, Yarden Y, Elazar Z. Soussan L, et al. J Cell Biol. 1999 Jul 26;146(2):301-11. doi: 10.1083/jcb.146.2.301. J Cell Biol. 1999. PMID: 10427086 Free PMC article. - A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP.
Loewen CJ, Roy A, Levine TP. Loewen CJ, et al. EMBO J. 2003 May 1;22(9):2025-35. doi: 10.1093/emboj/cdg201. EMBO J. 2003. PMID: 12727870 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous