Efficient insertional mutagenesis in lactococci and other gram-positive bacteria - PubMed (original) (raw)

Efficient insertional mutagenesis in lactococci and other gram-positive bacteria

E Maguin et al. J Bacteriol. 1996 Feb.

Abstract

In lactococci, the study of chromosomal genes and their regulation is limited by the lack of an efficient transposon mutagenesis system. We associated the insertion sequence ISS1 with the thermosensitive replicon pG+ host to generate a mutagenic tool that can be used even in poorly transformable strains. ISS1 transposition is random in different lactococcal strains as well as in Enterococcus faecalis and Streptococcus thermophilus. High-frequency random insertion (of about 1%) obtained with this system in Lactococcus lactis allows efficient mutagenesis, with typically one insertion per cell. After ISS1 replicative transposition, the chromosome contains duplicated ISS1 sequences flanking pG+ host. This structure allows cloning of the interrupted gene. In addition, efficient excision of the plasmid leaves a single ISS1 copy at the mutated site, thus generating a stable mutant strain with no foreign markers. Mutants obtained by this transposition system are food grade and can thus be used in fermentation processes.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Appl Environ Microbiol. 1989 Jul;55(7):1769-74 - PubMed
    1. J Bacteriol. 1987 Dec;169(12):5481-8 - PubMed
    1. FEMS Microbiol Lett. 1991 May 15;64(2-3):311-7 - PubMed
    1. Appl Environ Microbiol. 1990 Jun;56(6):1890-6 - PubMed
    1. Gene. 1992 Feb 1;111(1):109-14 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources