Forces contributing to the conformational stability of proteins - PubMed (original) (raw)
Review
Forces contributing to the conformational stability of proteins
C N Pace et al. FASEB J. 1996 Jan.
Abstract
For 35 years, the prevailing view has been that the hydrophobic effect is the dominant force in protein folding. The importance of hydrogen bonding was always clear, but whether it made a net favorable contribution to protein stability was not. Studies of mutant proteins have improved our understanding of the forces stabilizing proteins. They suggest that hydrogen bonding and the hydrophobic effect make large but comparable contributions to the stability of globular proteins.
Similar articles
- Contribution of hydrogen bonding to the conformational stability of ribonuclease T1.
Shirley BA, Stanssens P, Hahn U, Pace CN. Shirley BA, et al. Biochemistry. 1992 Jan 28;31(3):725-32. doi: 10.1021/bi00118a013. Biochemistry. 1992. PMID: 1731929 - Evaluating contribution of hydrogen bonding and hydrophobic bonding to protein folding.
Pace CN. Pace CN. Methods Enzymol. 1995;259:538-54. doi: 10.1016/0076-6879(95)59060-9. Methods Enzymol. 1995. PMID: 8538471 No abstract available. - Contribution of a conserved asparagine to the conformational stability of ribonucleases Sa, Ba, and T1.
Hebert EJ, Giletto A, Sevcik J, Urbanikova L, Wilson KS, Dauter Z, Pace CN. Hebert EJ, et al. Biochemistry. 1998 Nov 17;37(46):16192-200. doi: 10.1021/bi9815243. Biochemistry. 1998. PMID: 9819211 - Forces stabilizing proteins.
Nick Pace C, Scholtz JM, Grimsley GR. Nick Pace C, et al. FEBS Lett. 2014 Jun 27;588(14):2177-84. doi: 10.1016/j.febslet.2014.05.006. Epub 2014 May 17. FEBS Lett. 2014. PMID: 24846139 Free PMC article. Review. - Measuring and increasing protein stability.
Pace CN. Pace CN. Trends Biotechnol. 1990 Apr;8(4):93-8. doi: 10.1016/0167-7799(90)90146-o. Trends Biotechnol. 1990. PMID: 1367432 Review.
Cited by
- Computational study of β-N-acetylhexosaminidase from Talaromyces flavus, a glycosidase with high substrate flexibility.
Kulik N, Slámová K, Ettrich R, Křen V. Kulik N, et al. BMC Bioinformatics. 2015 Jan 28;16:28. doi: 10.1186/s12859-015-0465-8. BMC Bioinformatics. 2015. PMID: 25627923 Free PMC article. - Extremophilic SHMTs: from structure to biotechnology.
Angelaccio S. Angelaccio S. Biomed Res Int. 2013;2013:851428. doi: 10.1155/2013/851428. Epub 2013 Jun 13. Biomed Res Int. 2013. PMID: 23841096 Free PMC article. Review. - Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm.
Jollivet D, Mary J, Gagnière N, Tanguy A, Fontanillas E, Boutet I, Hourdez S, Segurens B, Weissenbach J, Poch O, Lecompte O. Jollivet D, et al. PLoS One. 2012;7(2):e31150. doi: 10.1371/journal.pone.0031150. Epub 2012 Feb 10. PLoS One. 2012. PMID: 22348046 Free PMC article. - Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65.
Sickmier EA, Frato KE, Shen H, Paranawithana SR, Green MR, Kielkopf CL. Sickmier EA, et al. Mol Cell. 2006 Jul 7;23(1):49-59. doi: 10.1016/j.molcel.2006.05.025. Mol Cell. 2006. PMID: 16818232 Free PMC article. - Perturbed amelogenin secondary structure leads to uncontrolled aggregation in amelogenesis imperfecta mutant proteins.
Lakshminarayanan R, Bromley KM, Lei YP, Snead ML, Moradian-Oldak J. Lakshminarayanan R, et al. J Biol Chem. 2010 Dec 24;285(52):40593-603. doi: 10.1074/jbc.M110.131136. Epub 2010 Oct 7. J Biol Chem. 2010. PMID: 20929860 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources