Arrangement and nucleotide sequence of the gene (fus) encoding elongation factor G (EF-G) from the hyperthermophilic bacterium Aquifex pyrophilus: phylogenetic depth of hyperthermophilic bacteria inferred from analysis of the EF-G/fus sequences - PubMed (original) (raw)
Arrangement and nucleotide sequence of the gene (fus) encoding elongation factor G (EF-G) from the hyperthermophilic bacterium Aquifex pyrophilus: phylogenetic depth of hyperthermophilic bacteria inferred from analysis of the EF-G/fus sequences
M Bocchetta et al. J Mol Evol. 1995 Dec.
Abstract
The gene fus (for EF-G) of the hyperthermophilic bacterium Aquifex pyrophilus was cloned and sequenced. Unlike the other bacteria, which display the streptomycin-operon arrangement of EF genes (5'-rps12-rps7-fus-tuf-3'), the Aquifex fus gene (700 codons) is not preceded by the two small ribosomal subunit genes although it is still followed by a tuf gene (for EF-Tu). The opposite strand upstream from the EF-G coding locus revealed an open reading frame (ORF) encoding a polypeptide having 52.5% identity with an E. coli protein (the pdxJ gene product) involved in pyridoxine condensation. The Aquifex EF-G was aligned with available homologs representative of Deinococci, high G+C Gram positives, Proteobacteria, cyanobacteria, and several Archaea. Outgroup-rooted phylogenies were constructed from both the amino acid and the DNA sequences using first and second codon positions in the alignments except sites containing synonymous changes. Both datasets and alternative tree-making methods gave a consistent topology, with Aquifex and Thermotoga maritima (a hyperthermophile) as the first and the second deepest offshoots, respectively. However, the robustness of the inferred phylogenies is not impressive. The branching of Aquifex more deeply than Thermotoga and the branching of Thermotoga more deeply than the other taxa examined are given at bootstrap values between 65 and 70% in the fus-based phylogenies, while the EF-G(2)-based phylogenies do not provide a statistically significant level of support (< or = 50% bootstrap confirmation) for the emergence of Thermotoga between Aquifex and the successive offshoot (Thermus genus). At present, therefore, the placement of Aquifex at the root of the bacterial tree, albeit reproducible, can be asserted only with reservation, while the emergence of Thermotoga between the Aquificales and the Deinococci remains (statistically) indeterminate.
Similar articles
- Phylogenetic depth of the bacterial genera Aquifex and Thermotoga inferred from analysis of ribosomal protein, elongation factor, and RNA polymerase subunit sequences.
Bocchetta M, Gribaldo S, Sanangelantoni A, Cammarano P. Bocchetta M, et al. J Mol Evol. 2000 Apr;50(4):366-80. doi: 10.1007/s002399910040. J Mol Evol. 2000. PMID: 10795828 - Chromosomal organization and nucleotide sequence of the genes for elongation factors EF-1 alpha and EF-2 and ribosomal proteins S7 and S10 of the hyperthermophilic archaeum Desulfurococcus mobilis.
Ceccarelli E, Bocchetta M, Creti R, Sanangelantoni AM, Tiboni O, Cammarano P. Ceccarelli E, et al. Mol Gen Genet. 1995 Mar 20;246(6):687-96. doi: 10.1007/BF00290714. Mol Gen Genet. 1995. PMID: 7898436 - Phylogenetic depth of Thermotoga maritima inferred from analysis of the fus gene: amino acid sequence of elongation factor G and organization of the Thermotoga str operon.
Tiboni O, Cantoni R, Creti R, Cammarano P, Sanangelantoni AM. Tiboni O, et al. J Mol Evol. 1991 Aug;33(2):142-51. doi: 10.1007/BF02193628. J Mol Evol. 1991. PMID: 1920450 - Critical issues in bacterial phylogeny.
Gupta RS, Griffiths E. Gupta RS, et al. Theor Popul Biol. 2002 Jun;61(4):423-34. doi: 10.1006/tpbi.2002.1589. Theor Popul Biol. 2002. PMID: 12167362 Review. - Ancient phylogenetic relationships.
Gribaldo S, Philippe H. Gribaldo S, et al. Theor Popul Biol. 2002 Jun;61(4):391-408. doi: 10.1006/tpbi.2002.1593. Theor Popul Biol. 2002. PMID: 12167360 Review.
Cited by
- Being Aquifex aeolicus: Untangling a hyperthermophile's checkered past.
Eveleigh RJ, Meehan CJ, Archibald JM, Beiko RG. Eveleigh RJ, et al. Genome Biol Evol. 2013;5(12):2478-97. doi: 10.1093/gbe/evt195. Genome Biol Evol. 2013. PMID: 24281050 Free PMC article. - Chapter 12: Human microbiome analysis.
Morgan XC, Huttenhower C. Morgan XC, et al. PLoS Comput Biol. 2012;8(12):e1002808. doi: 10.1371/journal.pcbi.1002808. Epub 2012 Dec 27. PLoS Comput Biol. 2012. PMID: 23300406 Free PMC article. - Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein.
Gribaldo S, Lumia V, Creti R, Conway de Macario E, Sanangelantoni A, Cammarano P. Gribaldo S, et al. J Bacteriol. 1999 Jan;181(2):434-43. doi: 10.1128/JB.181.2.434-443.1999. J Bacteriol. 1999. PMID: 9882656 Free PMC article. - Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes.
Gupta RS. Gupta RS. Microbiol Mol Biol Rev. 1998 Dec;62(4):1435-91. doi: 10.1128/MMBR.62.4.1435-1491.1998. Microbiol Mol Biol Rev. 1998. PMID: 9841678 Free PMC article. Review. - Archaea and the prokaryote-to-eukaryote transition.
Brown JR, Doolittle WF. Brown JR, et al. Microbiol Mol Biol Rev. 1997 Dec;61(4):456-502. doi: 10.1128/mmbr.61.4.456-502.1997. Microbiol Mol Biol Rev. 1997. PMID: 9409149 Free PMC article. Review.
References
- Gene. 1992 Oct 12;120(1):33-41 - PubMed
- Trends Biochem Sci. 1992 Dec;17(12):489-93 - PubMed
- Science. 1988 Feb 12;239(4841 Pt 1):748-53 - PubMed
- Mol Biol Evol. 1994 Mar;11(2):261-77 - PubMed
- J Mol Evol. 1994 Jun;38(6):566-76 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Miscellaneous