Modulation of the antilisterial activity of human blood-derived macrophages by activating and deactivating cytokines - PubMed (original) (raw)

Comparative Study

Modulation of the antilisterial activity of human blood-derived macrophages by activating and deactivating cytokines

F Bläuer et al. J Interferon Cytokine Res. 1995 Feb.

Abstract

A concept of macrophage deactivation by hormones and cytokines that opposes activation was recently proposed. Deactivation of the antilisterial activity of macrophages by IL-4, IL-10, and TGF-beta, as well as by dexamethasone, was studied here. IL-4, IL-10, and dexamethasone, but not TGF-beta, caused a complete loss of the competence of human blood-derived macrophages infected with Listeria monocytogenes to control or eliminate ingested bacteria. IL-10 and, to a lesser degree, dexamethasone lessened in parallel the capacity of macrophages to secrete H2O2. The antilisterial activity of cells simultaneously exposed to deactivating agents could be significantly augmented by IFN-gamma. Likewise, TNF-alpha and to a limited degree GM-CSF increased the antilisterial activity of cells treated with IL-10 and dexamethasone but not that of cells treated with IL-4. Suppression of TNF-alpha secretion in response to Listeria by TGF-beta, IL-10, dexamethasone, or pentoxifylline did not closely parallel antilisterial activity. Studies by transmission electron microscopy and actin staining suggested that deactivation by IL-10, IL-4, and dexamethasone of human blood-derived macrophages resulted in intraphagosomal multiplication of Listeria followed only then by an escape of bacteria into the cytoplasm. The antibacterial competence of human macrophages is lessened by IL-4 and IL-10 and augmented by IFN-gamma, TNF-alpha, and GM-CSF. The success of human macrophages in controlling intracellular pathogens appears to depend on the balance of activating and deactivating mediators modulating their activity.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources