DNA recovery from soils of diverse composition - PubMed (original) (raw)
Comparative Study
DNA recovery from soils of diverse composition
J Zhou et al. Appl Environ Microbiol. 1996 Feb.
Abstract
A simple, rapid method for bacterial lysis and direct extraction of DNA from soils with minimal shearing was developed to address the risk of chimera formation from small template DNA during subsequent PCR. The method was based on lysis with a high-salt extraction buffer (1.5 M NaCl) and extended heating (2 to 3 h) of the soil suspension in the presence of sodium dodecyl sulfate (SDS), hexadecyltrimethylammonium bromide, and proteinase K. The extraction method required 6 h and was tested on eight soils differing in organic carbon, clay content, and pH, including ones from which DNA extraction is difficult. The DNA fragment size in crude extracts from all soils was > 23 kb. Preliminary trials indicated that DNA recovery from two soils seeded with gram-negative bacteria was 92 to 99%. When the method was tested on all eight unseeded soils, microscopic examination of indigenous bacteria in soil pellets before and after extraction showed variable cell lysis efficiency (26 to 92%). Crude DNA yields from the eight soils ranged from 2.5 to 26.9 micrograms of DNA g-1, and these were positively correlated with the organic carbon content in the soil (r = 0.73). DNA yields from gram-positive bacteria from pure cultures were two to six times higher when the high-salt-SDS-heat method was combined with mortar-and-pestle grinding and freeze-thawing, and most DNA recovered was of high molecular weight. Four methods for purifying crude DNA were also evaluated for percent recovery, fragment size, speed, enzyme restriction, PCR amplification, and DNA-DNA hybridization. In general, all methods produced DNA pure enough for PCR amplification. Since soil type and microbial community characteristics will influence DNA recovery, this study provides guidance for choosing appropriate extraction and purification methods on the basis of experimental goals.
Similar articles
- DNA recovery and PCR quantification of catechol 2,3-dioxygenase genes from different soil types.
Wikström P, Wiklund A, Andersson AC, Forsman M. Wikström P, et al. J Biotechnol. 1996 Dec 10;52(2):107-20. doi: 10.1016/s0168-1656(96)01635-5. J Biotechnol. 1996. PMID: 9084210 - Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples.
Miller DN, Bryant JE, Madsen EL, Ghiorse WC. Miller DN, et al. Appl Environ Microbiol. 1999 Nov;65(11):4715-24. doi: 10.1128/AEM.65.11.4715-4724.1999. Appl Environ Microbiol. 1999. PMID: 10543776 Free PMC article. - Quantification of bias related to the extraction of DNA directly from soils.
Frostegård A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet P. Frostegård A, et al. Appl Environ Microbiol. 1999 Dec;65(12):5409-20. doi: 10.1128/AEM.65.12.5409-5420.1999. Appl Environ Microbiol. 1999. PMID: 10583997 Free PMC article. - One gram of soil: a microbial biochemical gene library.
Trevors JT. Trevors JT. Antonie Van Leeuwenhoek. 2010 Feb;97(2):99-106. doi: 10.1007/s10482-009-9397-5. Epub 2009 Nov 18. Antonie Van Leeuwenhoek. 2010. PMID: 19921459 Review. - Direct extraction of DNA from soils for studies in microbial ecology.
Schneegurt MA, Dore SY, Kulpa CF Jr. Schneegurt MA, et al. Curr Issues Mol Biol. 2003 Jan;5(1):1-8. Curr Issues Mol Biol. 2003. PMID: 12638659 Review.
Cited by
- Microbial diversity and biochemical potential encoded by thermal spring metagenomes derived from the Kamchatka Peninsula.
Wemheuer B, Taube R, Akyol P, Wemheuer F, Daniel R. Wemheuer B, et al. Archaea. 2013;2013:136714. doi: 10.1155/2013/136714. Epub 2013 Feb 27. Archaea. 2013. PMID: 23533327 Free PMC article. - Thermophilic archaea activate butane via alkyl-coenzyme M formation.
Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, Meier DV, Richter M, Tegetmeyer HE, Riedel D, Richnow HH, Adrian L, Reemtsma T, Lechtenfeld OJ, Musat F. Laso-Pérez R, et al. Nature. 2016 Nov 17;539(7629):396-401. doi: 10.1038/nature20152. Epub 2016 Oct 17. Nature. 2016. PMID: 27749816 - Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming.
Guo X, Gao Q, Yuan M, Wang G, Zhou X, Feng J, Shi Z, Hale L, Wu L, Zhou A, Tian R, Liu F, Wu B, Chen L, Jung CG, Niu S, Li D, Xu X, Jiang L, Escalas A, Wu L, He Z, Van Nostrand JD, Ning D, Liu X, Yang Y, Schuur EAG, Konstantinidis KT, Cole JR, Penton CR, Luo Y, Tiedje JM, Zhou J. Guo X, et al. Nat Commun. 2020 Sep 29;11(1):4897. doi: 10.1038/s41467-020-18706-z. Nat Commun. 2020. PMID: 32994415 Free PMC article. - Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction.
Zhang P, Wu WM, Van Nostrand JD, Deng Y, He Z, Gihring T, Zhang G, Schadt CW, Watson D, Jardine P, Criddle CS, Brooks S, Marsh TL, Tiedje JM, Arkin AP, Zhou J. Zhang P, et al. Appl Environ Microbiol. 2015 Jun 15;81(12):4164-72. doi: 10.1128/AEM.00043-15. Epub 2015 Apr 10. Appl Environ Microbiol. 2015. PMID: 25862231 Free PMC article. - Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution.
Zhou A, Baidoo E, He Z, Mukhopadhyay A, Baumohl JK, Benke P, Joachimiak MP, Xie M, Song R, Arkin AP, Hazen TC, Keasling JD, Wall JD, Stahl DA, Zhou J. Zhou A, et al. ISME J. 2013 Sep;7(9):1790-802. doi: 10.1038/ismej.2013.60. Epub 2013 Apr 11. ISME J. 2013. PMID: 23575373 Free PMC article.
References
- Mol Ecol. 1995 Oct;4(5):613-8 - PubMed
- Int J Syst Bacteriol. 1995 Jul;45(3):500-6 - PubMed
- Appl Environ Microbiol. 1990 Mar;56(3):782-7 - PubMed
- Appl Environ Microbiol. 1988 Mar;54(3):703-711 - PubMed
- Appl Environ Microbiol. 1988 Sep;54(9):2185-91 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources