X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution - PubMed (original) (raw)
. 1996 Apr 30;35(17):5404-17.
doi: 10.1021/bi952633+.
Affiliations
- PMID: 8611530
- DOI: 10.1021/bi952633+
X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution
C A Smith et al. Biochemistry. 1996.
Abstract
The structure of the vanadate-trapped ADP complex of a truncated head of Dictyostelium myosin II consisting of residues Asp 2-Asn 762 has been determined by molecular replacement at 1.9 A resolution and refined to a crystallographic R-factor of 19.4%. The crystals belong to the orthorhombic space group C2221 where a = 84.50 A, b = 145.4 A, and c = 152.8 A. The conformation of the protein is similar to that of MgADP.AlF4.SlDc [Fisher, A.J., et al. (1995) Biochemistry 34, 8960-8972]. The nucleotide binding site contains a complex between MgADP and vanadate where MgADP exhibits a very similar conformation to that seen in previous complexes. The vanadate ion adopts a trigonal bipyramidal coordination. The three equatorial oxygen ligands are fairly short, average 1.7 A, relative to a single bond distance of approximately 1.8 A and are coordinated to the magnesium ion, N zeta of Lys 185, and five other protein ligands. The apical coordination to the vanadate ion is filled by a terminal oxygen on the beta-phosphate of ADP and a water molecule at bond distances of 2.1 and 2.3 A, respectively. The long length of the apical bonds suggests that the bond order is considerably less than unity. This structure confirms the earlier suggestion that vanadate is a model for the transition state of ATP hydrolysis and thus provides insight into those factors that are responsible for catalysis. In particular, it shows that the protein ligands and water structure surrounding the gamma-phosphate pocket are oriented to stabilize a water molecule in an appropriate position for in-line nucleophilic attack on the gamma-phosphorus of ATP. This structure reveals also an orientation of the COOH-terminal region beyond Thr 688 which is very different from that observed in either MgADP.BeFx.SlDc or chicken skeletal myosin subfragment 1. This is consistent with the COOH-terminal region of the molecule playing an important role in the transduction of chemical energy of hydrolysis of ATP into mechanical movement.
Similar articles
- X-ray structures of the MgADP, MgATPgammaS, and MgAMPPNP complexes of the Dictyostelium discoideum myosin motor domain.
Gulick AM, Bauer CB, Thoden JB, Rayment I. Gulick AM, et al. Biochemistry. 1997 Sep 30;36(39):11619-28. doi: 10.1021/bi9712596. Biochemistry. 1997. PMID: 9305951 - Raman difference spectroscopic studies of the myosin S1.MgADP.vanadate complex.
Deng H, Wang J, Callender RH, Grammer JC, Yount RG. Deng H, et al. Biochemistry. 1998 Aug 4;37(31):10972-9. doi: 10.1021/bi980556n. Biochemistry. 1998. PMID: 9692990 - X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-.
Fisher AJ, Smith CA, Thoden JB, Smith R, Sutoh K, Holden HM, Rayment I. Fisher AJ, et al. Biochemistry. 1995 Jul 18;34(28):8960-72. doi: 10.1021/bi00028a004. Biochemistry. 1995. PMID: 7619795 - The power of vanadate in crystallographic investigations of phosphoryl transfer enzymes.
Davies DR, Hol WG. Davies DR, et al. FEBS Lett. 2004 Nov 19;577(3):315-21. doi: 10.1016/j.febslet.2004.10.022. FEBS Lett. 2004. PMID: 15556602 Review. - Photochemical mapping of the active site of myosin.
Yount RG, Cremo CR, Grammer JC, Kerwin BA. Yount RG, et al. Philos Trans R Soc Lond B Biol Sci. 1992 Apr 29;336(1276):55-60; discussion 60-1. doi: 10.1098/rstb.1992.0044. Philos Trans R Soc Lond B Biol Sci. 1992. PMID: 1351297 Review.
Cited by
- An allosteric inhibitor of RhoGAP class-IX myosins suppresses the metastatic features of cancer cells.
Kyriazi D, Voth L, Bader A, Ewert W, Gerlach J, Elfrink K, Franz P, Tsap MI, Schirmer B, Damiano-Guercio J, Hartmann FK, Plenge M, Salari A, Schöttelndreier D, Strienke K, Bresch N, Salinas C, Gutzeit HO, Schaumann N, Hussein K, Bähre H, Brüsch I, Claus P, Neumann D, Taft MH, Shcherbata HR, Ngezahayo A, Bähler M, Amiri M, Knölker HJ, Preller M, Tsiavaliaris G. Kyriazi D, et al. Nat Commun. 2024 Nov 16;15(1):9947. doi: 10.1038/s41467-024-54181-6. Nat Commun. 2024. PMID: 39550360 Free PMC article. - Study of the Myosin Relay Helix Peptide by Molecular Dynamics Simulations, Pump-Probe and 2D Infrared Spectroscopy.
Freedman H, Tuszynski JA. Freedman H, et al. Int J Mol Sci. 2024 Jun 10;25(12):6406. doi: 10.3390/ijms25126406. Int J Mol Sci. 2024. PMID: 38928112 Free PMC article. - Nucleotide binding is the critical regulator of ABCG2 conformational transitions.
Gyöngy Z, Mocsár G, Hegedűs É, Stockner T, Ritter Z, Homolya L, Schamberger A, Orbán TI, Remenyik J, Szakacs G, Goda K. Gyöngy Z, et al. Elife. 2023 Feb 10;12:e83976. doi: 10.7554/eLife.83976. Elife. 2023. PMID: 36763413 Free PMC article. - Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity.
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Kozlova MI, et al. Biomolecules. 2022 Sep 22;12(10):1346. doi: 10.3390/biom12101346. Biomolecules. 2022. PMID: 36291556 Free PMC article. - Actomyosin Complex.
Pepper I, Galkin VE. Pepper I, et al. Subcell Biochem. 2022;99:421-470. doi: 10.1007/978-3-031-00793-4_14. Subcell Biochem. 2022. PMID: 36151385 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases