Regulation by the ribosome of the GTPase of the signal-recognition particle during protein targeting - PubMed (original) (raw)
. 1996 May 16;381(6579):248-51.
doi: 10.1038/381248a0.
Affiliations
- PMID: 8622769
- DOI: 10.1038/381248a0
Regulation by the ribosome of the GTPase of the signal-recognition particle during protein targeting
G Bacher et al. Nature. 1996.
Abstract
The signal-recognition particle (SRP) is important for the targeting of many secretory and membrane proteins to the endoplasmic reticulum (ER). Targeting is regulated by three GTPases, the 54K subunit of SRP (SRP54), and the alpha- and beta-subunits of the SRP receptor. When a signal sequence emerges from the ribosome, SRP interacts with it and targets the resulting complex to the ER membrane by binding to the SRP receptor. Subsequently, SRP releases the signal sequence into the translocation channel. Here we use a complex of a ribosome with a nascent peptide chain, the SRP and its receptor, to investigate GTP binding to SRP54, and GTP hydrolysis. Our findings indicate that a ribosomal component promotes GTP binding to the SRP54 subunit of SRP. GTP-bound SRP54 is essential for high-affinity interaction between SRP and its receptor in the ER membrane. This interaction induces the release of the signal sequence from SRP, the insertion of the nascent polypeptide chain into the translocation channel, and GTP hydrolysis. The contribution of the ribosome had previously escaped detection because only synthetic signal peptides were used in the analysis.
Comment in
- Protein targeting. The ribosome talks back.
Powers T, Walter P. Powers T, et al. Nature. 1996 May 16;381(6579):191-2. doi: 10.1038/381191a0. Nature. 1996. PMID: 8622754 No abstract available.
Similar articles
- GTP binding and hydrolysis by the signal recognition particle during initiation of protein translocation.
Miller JD, Wilhelm H, Gierasch L, Gilmore R, Walter P. Miller JD, et al. Nature. 1993 Nov 25;366(6453):351-4. doi: 10.1038/366351a0. Nature. 1993. PMID: 8247130 - Distinct modes of signal recognition particle interaction with the ribosome.
Pool MR, Stumm J, Fulga TA, Sinning I, Dobberstein B. Pool MR, et al. Science. 2002 Aug 23;297(5585):1345-8. doi: 10.1126/science.1072366. Science. 2002. PMID: 12193787 - Interaction of E. coli Ffh/4.5S ribonucleoprotein and FtsY mimics that of mammalian signal recognition particle and its receptor.
Miller JD, Bernstein HD, Walter P. Miller JD, et al. Nature. 1994 Feb 17;367(6464):657-9. doi: 10.1038/367657a0. Nature. 1994. PMID: 8107852 - A structural step into the SRP cycle.
Wild K, Rosendal KR, Sinning I. Wild K, et al. Mol Microbiol. 2004 Jul;53(2):357-63. doi: 10.1111/j.1365-2958.2004.04139.x. Mol Microbiol. 2004. PMID: 15228518 Review. - Structure, function and evolution of the signal recognition particle.
Nagai K, Oubridge C, Kuglstatter A, Menichelli E, Isel C, Jovine L. Nagai K, et al. EMBO J. 2003 Jul 15;22(14):3479-85. doi: 10.1093/emboj/cdg337. EMBO J. 2003. PMID: 12853463 Free PMC article. Review.
Cited by
- A ribosome-associated chaperone enables substrate triage in a cotranslational protein targeting complex.
Hsieh HH, Lee JH, Chandrasekar S, Shan SO. Hsieh HH, et al. Nat Commun. 2020 Nov 17;11(1):5840. doi: 10.1038/s41467-020-19548-5. Nat Commun. 2020. PMID: 33203865 Free PMC article. - A molecular recognition feature mediates ribosome-induced SRP-receptor assembly during protein targeting.
Hwang Fu YH, Chandrasekar S, Lee JH, Shan SO. Hwang Fu YH, et al. J Cell Biol. 2019 Oct 7;218(10):3307-3319. doi: 10.1083/jcb.201901001. Epub 2019 Sep 19. J Cell Biol. 2019. PMID: 31537711 Free PMC article. - Sequential activation of human signal recognition particle by the ribosome and signal sequence drives efficient protein targeting.
Lee JH, Chandrasekar S, Chung S, Hwang Fu YH, Liu D, Weiss S, Shan SO. Lee JH, et al. Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):E5487-E5496. doi: 10.1073/pnas.1802252115. Epub 2018 May 30. Proc Natl Acad Sci U S A. 2018. PMID: 29848629 Free PMC article. - Structure of a prehandover mammalian ribosomal SRP·SRP receptor targeting complex.
Kobayashi K, Jomaa A, Lee JH, Chandrasekar S, Boehringer D, Shan SO, Ban N. Kobayashi K, et al. Science. 2018 Apr 20;360(6386):323-327. doi: 10.1126/science.aar7924. Epub 2018 Mar 22. Science. 2018. PMID: 29567807 Free PMC article. - Transcriptomic analysis of gene expression in mice treated with troxerutin.
Wang Y, Wei S, Chen L, Pei J, Wu H, Pei Y, Chen Y, Wang D. Wang Y, et al. PLoS One. 2017 Nov 30;12(11):e0188261. doi: 10.1371/journal.pone.0188261. eCollection 2017. PLoS One. 2017. PMID: 29190643 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases