The role of vasopressin, somatostatin and GABA in febrile convulsion in rat pups - PubMed (original) (raw)
The role of vasopressin, somatostatin and GABA in febrile convulsion in rat pups
S Nagaki et al. Life Sci. 1996.
Abstract
In order to further elucidate a possible role of neuropeptides and GABA in the pathogenesis of febrile convulsions, we studied changes of immunoreactive-arginine vasopressin (IR-AVP), IR-somatostatin (IR-SRIF) and gamma-aminobutyric acid (GABA) in the rat brain after febrile convulsions induced by ultra-red light (UR). Male Wistar rats at 16 days of age irradiated with UR developed generalized convulsions after 4.9 +/- 0.5 min irradiation. Six rats were killed by microwave irradiation 3 min after UR irradiation prior to convulsion development, and 29 rats were killed either 0 min, 2 h, 6 h, 24 h or 48 h after febrile convulsions. Non-irradiated rats served as controls. The rat brain was dissected into 4 regions; amygdala, hypothalamus, cortex and hippocampus, and subjected to radioimmunoassays. IR-AVP levels in hypothalamus were increased 3 min after UR and decreased at 2 h and 6 h after the convulsions. IR-SRIF levels were increased in cortex and hippocampus at 3 min after UR and 0 min after the convulsions. The GABA content increased in all regions tested at 2 h and 6 h after the convulsions. These results suggest that AVP, SRIF and GABA may be involved in the pathogenesis of febrile convulsions in different ways.
Similar articles
- Vasopressin may mediate febrile convulsions.
Kasting NW, Veale WL, Cooper KE, Lederis K. Kasting NW, et al. Brain Res. 1981 Jun 1;213(2):327-33. doi: 10.1016/0006-8993(81)90238-9. Brain Res. 1981. PMID: 7248761 - Effects of anticonvulsants and gamma-aminobutyric acid (GABA)-mimetic drugs on immunoreactive somatostatin and GABA contents in the rat brain.
Nagaki S, Kato N, Minatogawa Y, Higuchi T. Nagaki S, et al. Life Sci. 1990;46(22):1587-95. doi: 10.1016/0024-3205(90)90396-9. Life Sci. 1990. PMID: 1972258 - Experimental febrile convulsions: long-term effects of hyperthermia-induced convulsions in the developing rat.
McCaughran JA Jr, Schechter N. McCaughran JA Jr, et al. Epilepsia. 1982 Apr;23(2):173-83. doi: 10.1111/j.1528-1157.1982.tb05065.x. Epilepsia. 1982. PMID: 7075572 - Arginine vasopressin in the pathogenesis of febrile convulsion and temporal lobe epilepsy.
Gulec G, Noyan B. Gulec G, et al. Neuroreport. 2002 Nov 15;13(16):2045-8. doi: 10.1097/00001756-200211150-00011. Neuroreport. 2002. PMID: 12438923 - Management of febrile convulsion in children.
Paul SP, Rogers E, Wilkinson R, Paul B. Paul SP, et al. Emerg Nurse. 2015 May;23(2):18-25. doi: 10.7748/en.23.2.18.e1431. Emerg Nurse. 2015. PMID: 25952398 Review.
Cited by
- The long-term neurodevelopmental outcomes of febrile seizures and underlying mechanisms.
Yi Y, Zhong C, Wei-Wei H. Yi Y, et al. Front Cell Dev Biol. 2023 May 25;11:1186050. doi: 10.3389/fcell.2023.1186050. eCollection 2023. Front Cell Dev Biol. 2023. PMID: 37305674 Free PMC article. Review. - Increased von Willebrand factor parameters in children with febrile seizures.
Pechmann A, Wellmann S, Stoecklin B, Krüger M, Zieger B. Pechmann A, et al. PLoS One. 2019 Jan 3;14(1):e0210004. doi: 10.1371/journal.pone.0210004. eCollection 2019. PLoS One. 2019. PMID: 30605489 Free PMC article. - Peptidergic mechanisms of hyperthermia-evoked convulsions in rats in early postnatal ontogenesis.
Chepurnova NE, Ponomarenko AA, Chepurnov SA. Chepurnova NE, et al. Neurosci Behav Physiol. 2002 Sep-Oct;32(5):505-11. doi: 10.1023/a:1019807622531. Neurosci Behav Physiol. 2002. PMID: 12403002 - Neuropeptides as targets for the development of anticonvulsant drugs.
Clynen E, Swijsen A, Raijmakers M, Hoogland G, Rigo JM. Clynen E, et al. Mol Neurobiol. 2014 Oct;50(2):626-46. doi: 10.1007/s12035-014-8669-x. Epub 2014 Apr 6. Mol Neurobiol. 2014. PMID: 24705860 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous