The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus - PubMed (original) (raw)
The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus
D Fernandez et al. J Bacteriol. 1996 Jun.
Abstract
The Agrobacterium tumefaciens virB7 gene product is a lipoprotein whose function is required for the transmission of oncogenic T-DNA to susceptible plant cells. Three lines of study provided evidence that VirB7 interacts with and stabilizes other VirB proteins during the assembly of the putative T-complex transport apparatus. First, a precise deletion of virB7 from the pTiA6NC plasmid of wild-type strain A348 was correlated with significant reductions in the steady-state levels of several VirB proteins, including VirB4, VirB9, VirB10, and VirB11; trans expression of virB7 in the delta virB7 mutant partially restored the levels of these proteins, and trans coexpression of virB7 and virB8 fully restored the levels of these proteins to wild-type levels. Second, modulation of VirB7 levels resulted in corresponding changes in the levels of other VirB proteins in the following cell types: (i) a delta virB7 mutant expressing virB7 and virB8 from isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible Plac and other virB genes from acetosyringone (AS)-inducible PvirB; (ii) a delta virB operon mutant expressing virB7 and virB8 from Plac and virB9, virB10, and virB11 from PvirB; and (iii) a delta virB operon mutant expressing virB7 from IPTG-inducible Pklac and virB9 from an AS-inducible PvirB. Third, the synthesis of a VirB7::PhoA fusion protein in strain A348 was correlated with a significant reduction in the steady-state levels of VirB4, VirB5, and VirB7 through VirB11; these cells also exhibited a severely attenuated virulence phenotype, indicating that synthesis of the fusion protein perturbs the assembly of VirB proteins into a stabilized protein complex required for T-complex transport. Extracts of AS-induced cells electrophoresed under nonreducing conditions possessed undetectable levels of the 32-kDa VirB9 and 4.5-kDa VirB7 monomers and instead possessed a 36-kDa complex that cross-reacted with both VirB7 and VirB9 antisera and accumulated as a function of virB7 expression. Our results are consistent with a model in which VirB7 stabilizes VirB9 by formation of a covalent intermolecular cross-link; in turn, the VirB7-VirB9 heterodimer promotes the assembly of a functional T-complex transport machinery.
Similar articles
- The Agrobacterium tumefaciens virB7 gene product, a proposed component of the T-complex transport apparatus, is a membrane-associated lipoprotein exposed at the periplasmic surface.
Fernandez D, Dang TA, Spudich GM, Zhou XR, Berger BR, Christie PJ. Fernandez D, et al. J Bacteriol. 1996 Jun;178(11):3156-67. doi: 10.1128/jb.178.11.3156-3167.1996. J Bacteriol. 1996. PMID: 8655494 Free PMC article. - Agrobacterium tumefaciens VirB6 protein participates in formation of VirB7 and VirB9 complexes required for type IV secretion.
Jakubowski SJ, Krishnamoorthy V, Christie PJ. Jakubowski SJ, et al. J Bacteriol. 2003 May;185(9):2867-78. doi: 10.1128/JB.185.9.2867-2878.2003. J Bacteriol. 2003. PMID: 12700266 Free PMC article. - Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes.
Berger BR, Christie PJ. Berger BR, et al. J Bacteriol. 1994 Jun;176(12):3646-60. doi: 10.1128/jb.176.12.3646-3660.1994. J Bacteriol. 1994. PMID: 8206843 Free PMC article. - Assembly of the VirB transport complex for DNA transfer from Agrobacterium tumefaciens to plant cells.
Zupan JR, Ward D, Zambryski P. Zupan JR, et al. Curr Opin Microbiol. 1998 Dec;1(6):649-55. doi: 10.1016/s1369-5274(98)80110-0. Curr Opin Microbiol. 1998. PMID: 10066547 Review. - The role of the T-pilus in horizontal gene transfer and tumorigenesis.
Kado CI. Kado CI. Curr Opin Microbiol. 2000 Dec;3(6):643-8. doi: 10.1016/s1369-5274(00)00154-5. Curr Opin Microbiol. 2000. PMID: 11121787 Review.
Cited by
- Architecture of the outer-membrane core complex from a conjugative type IV secretion system.
Amin H, Ilangovan A, Costa TRD. Amin H, et al. Nat Commun. 2021 Nov 25;12(1):6834. doi: 10.1038/s41467-021-27178-8. Nat Commun. 2021. PMID: 34824240 Free PMC article. - The Rich Tapestry of Bacterial Protein Translocation Systems.
Christie PJ. Christie PJ. Protein J. 2019 Aug;38(4):389-408. doi: 10.1007/s10930-019-09862-3. Protein J. 2019. PMID: 31407127 Free PMC article. Review. - Insights into the transcriptomic response of the plant engineering bacterium Ensifer adhaerens OV14 during transformation.
Zuniga-Soto E, Fitzpatrick DA, Doohan FM, Mullins E. Zuniga-Soto E, et al. Sci Rep. 2019 Jul 17;9(1):10344. doi: 10.1038/s41598-019-44648-8. Sci Rep. 2019. PMID: 31316079 Free PMC article. - In Situ Molecular Architecture of the Helicobacter pylori Cag Type IV Secretion System.
Hu B, Khara P, Song L, Lin AS, Frick-Cheng AE, Harvey ML, Cover TL, Christie PJ. Hu B, et al. mBio. 2019 May 14;10(3):e00849-19. doi: 10.1128/mBio.00849-19. mBio. 2019. PMID: 31088930 Free PMC article. - From conjugation to T4S systems in Gram-negative bacteria: a mechanistic biology perspective.
Waksman G. Waksman G. EMBO Rep. 2019 Feb;20(2):e47012. doi: 10.15252/embr.201847012. Epub 2019 Jan 2. EMBO Rep. 2019. PMID: 30602585 Free PMC article. Review.
References
- FEMS Microbiol Lett. 1993 Aug 1;111(2-3):287-94 - PubMed
- J Bacteriol. 1990 Sep;172(9):5187-99 - PubMed
- J Bacteriol. 1994 Mar;176(6):1711-7 - PubMed
- Cell. 1994 May 6;77(3):321-4 - PubMed
- J Bacteriol. 1994 Jun;176(12):3646-60 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials