Nuk controls pathfinding of commissural axons in the mammalian central nervous system - PubMed (original) (raw)

Nuk controls pathfinding of commissural axons in the mammalian central nervous system

M Henkemeyer et al. Cell. 1996.

Free article

Abstract

Eph family receptor tyrosine kinases have been proposed to control axon guidance and fasciculation. To address the biological functions of the Eph family member Nuk, two mutations in the mouse germline have been generated: a protein null allele (Nuk1) and an allele that encodes a Nuk-beta gal fusion receptor lacking the tyrosine kinase and C-terminal domains (Nuk(lacZ)). In Nuk1 homozygous brains, the majority of axons forming the posterior tract of the anterior commissure migrate aberrantly to the floor of the brain, resulting in a failure of cortical neurons to link the two temporal lobes. These results indicate that Nuk, a receptor that binds transmembrane ligands, plays a critical and unique role in the pathfinding of specific axons in the mammalian central nervous system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources