Cap-prevented recombination between terminal telomeric repeat arrays (telomere CPR) maintains telomeres in Kluyveromyces lactis lacking telomerase - PubMed (original) (raw)
. 1996 Jul 15;10(14):1822-34.
doi: 10.1101/gad.10.14.1822.
Affiliations
- PMID: 8698241
- DOI: 10.1101/gad.10.14.1822
Free article
Cap-prevented recombination between terminal telomeric repeat arrays (telomere CPR) maintains telomeres in Kluyveromyces lactis lacking telomerase
M J McEachern et al. Genes Dev. 1996.
Free article
Abstract
Deletion of the telomerase RNA gene (TER1) in the yeast Kluyveromyces lactis results in gradual loss of telomeric repeats and progressively declining cell growth capability (growth senescence). We show that this initial growth senescence is characterized by abnormally large, defectively dividing cells and is delayed when cells initially contain elongated telomeres. However, cells that survive the initial catastrophic senescence emerge relatively frequently, and their subsequent growth without telomerase is surprisingly efficient. Survivors have lengthened telomeres, often much longer than wild type, but that are still subject to gradual shortening. Production of these postsenescence survivors is strongly dependent on the RAD52 gene. We propose that shortened, terminal telomeric repeat tracts become uncapped, promoting recombinational repair between them to regenerate lengthened telomeres in survivors. This process, which we term telomere cap-prevented recombination (CPR) may be a general alternative telomere maintenance pathway in eukaryotes.
Similar articles
- Factors influencing the recombinational expansion and spread of telomeric tandem arrays in Kluyveromyces lactis.
Natarajan S, Groff-Vindman C, McEachern MJ. Natarajan S, et al. Eukaryot Cell. 2003 Oct;2(5):1115-27. doi: 10.1128/EC.2.5.1115-1127.2003. Eukaryot Cell. 2003. PMID: 14555494 Free PMC article. - Genetic dissection of the Kluyveromyces lactis telomere and evidence for telomere capping defects in TER1 mutants with long telomeres.
Underwood DH, Carroll C, McEachern MJ. Underwood DH, et al. Eukaryot Cell. 2004 Apr;3(2):369-84. doi: 10.1128/EC.3.2.369-384.2004. Eukaryot Cell. 2004. PMID: 15075267 Free PMC article. - Mutant telomeric repeats in yeast can disrupt the negative regulation of recombination-mediated telomere maintenance and create an alternative lengthening of telomeres-like phenotype.
Bechard LH, Butuner BD, Peterson GJ, McRae W, Topcu Z, McEachern MJ. Bechard LH, et al. Mol Cell Biol. 2009 Feb;29(3):626-39. doi: 10.1128/MCB.00423-08. Epub 2008 Nov 24. Mol Cell Biol. 2009. PMID: 19029249 Free PMC article. - Telomere maintenance without telomerase.
Lundblad V. Lundblad V. Oncogene. 2002 Jan 21;21(4):522-31. doi: 10.1038/sj.onc.1205079. Oncogene. 2002. PMID: 11850777 Review. - The telomere and telomerase: nucleic acid-protein complexes acting in a telomere homeostasis system. A review.
Blackburn EH. Blackburn EH. Biochemistry (Mosc). 1997 Nov;62(11):1196-201. Biochemistry (Mosc). 1997. PMID: 9467842 Review.
Cited by
- "Poisoning" yeast telomeres distinguishes between redundant telomere capping pathways.
Lamm N, Bsoul S, Kabaha MM, Tzfati Y. Lamm N, et al. Chromosoma. 2012 Dec;121(6):613-27. doi: 10.1007/s00412-012-0385-6. Epub 2012 Oct 6. Chromosoma. 2012. PMID: 23052336 - Template requirements for telomerase translocation in Kluyveromyces lactis.
Underwood DH, Zinzen RP, McEachern MJ. Underwood DH, et al. Mol Cell Biol. 2004 Jan;24(2):912-23. doi: 10.1128/MCB.24.2.912-923.2004. Mol Cell Biol. 2004. PMID: 14701761 Free PMC article. - Inverse-Folding Design of Yeast Telomerase RNA Increases Activity In Vitro.
Lebo KJ, Zappulla DC. Lebo KJ, et al. Noncoding RNA. 2023 Aug 28;9(5):51. doi: 10.3390/ncrna9050051. Noncoding RNA. 2023. PMID: 37736897 Free PMC article. - The Molecular Mechanisms and Therapeutic Prospects of Alternative Lengthening of Telomeres (ALT).
Sohn EJ, Goralsky JA, Shay JW, Min J. Sohn EJ, et al. Cancers (Basel). 2023 Mar 23;15(7):1945. doi: 10.3390/cancers15071945. Cancers (Basel). 2023. PMID: 37046606 Free PMC article. Review. - First complete mitochondrial genome sequence from a box jellyfish reveals a highly fragmented linear architecture and insights into telomere evolution.
Smith DR, Kayal E, Yanagihara AA, Collins AG, Pirro S, Keeling PJ. Smith DR, et al. Genome Biol Evol. 2012;4(1):52-8. doi: 10.1093/gbe/evr127. Epub 2011 Nov 24. Genome Biol Evol. 2012. PMID: 22117085 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous