Epstein-Barr virus EBNA3A and EBNA3C proteins both repress RBP-J kappa-EBNA2-activated transcription by inhibiting the binding of RBP-J kappa to DNA - PubMed (original) (raw)

Epstein-Barr virus EBNA3A and EBNA3C proteins both repress RBP-J kappa-EBNA2-activated transcription by inhibiting the binding of RBP-J kappa to DNA

L Waltzer et al. J Virol. 1996 Sep.

Abstract

Following infection by Epstein-Barr virus (EBV), the production of viral nuclear proteins EBNA1, EBNA2, EBNA3A, and EBNA3C and the viral membrane protein LMP1 is essential for the permanent proliferation of primary B lymphocytes to occur. Among these, the transcription factor EBNA2 is central to the immortalizing process, since it activates not only the transcription of all the EBNA proteins and LMP1, TP1, and TP2 but also certain cellular genes. EBNA2 is targeted to its DNA-responsive elements through direct interaction with the DNA-binding cellular repressor RBP-J kappa. In a transient-expression assay, the EBNA2-activated transcription was found to be downregulated by EBNA3A, EBNA3B, and EBNA3C. However, since it has been reported that EBNA3C, but not EBNA3A, directly contacts RBP-J kappa in vitro, these proteins appear to repress through different mechanisms. Here, we report for the first time that EBNA3A and EBNA3C both stably interact with RBP-J kappa and most probably repress EBNA2-activated transcription by destabilizing the binding of RBP-J kappa to DNA.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Virol. 1990 Mar;64(3):1002-13 - PubMed
    1. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9558-62 - PubMed
    1. J Virol. 1990 May;64(5):2126-34 - PubMed
    1. J Virol. 1990 May;64(5):2309-18 - PubMed
    1. J Virol. 1990 Jun;64(6):2530-6 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources