Phage lysozymes - PubMed (original) (raw)
Review
Phage lysozymes
J Fastrez. EXS. 1996.
Abstract
Bacteriophage genomes encode lysozymes whose role is to favour the release of virions by lysis of the host cells or to facilitate infection. In this review, the evolutionary relationships between the phage lysozymes are described. They are grouped into several classes: the V-, the G-, the lambda- and the CH-type lysozymes. The results of structure determinations and of enzymological studies indicate that the enzymes belonging to the first two classes, and possibly the third, share common structural elements with C-type lysozymes (eg. hen egg white lysozyme). The proteins of the fourth class, on the other hand, are structurally similar to the S. erythraeus lysozyme. Several phage lysozymes feature a modular construction: besides the catalytic domain, they contain additional domains or repeated motifs presumed to be important for binding to the bacterial walls and for efficient catalysis. The mechanism of action of these enzymes is described and the role of the important amino acid residues is discussed on the basis of sequence comparisons and of mutational studies. The effects of mutations affecting the structure and of multiple mutations are also discussed, particularly in the case of the T4 lysozyme: from these studies, proteins appear to be quite tolerant of potentially disturbing modifications.
Similar articles
- Crystal structure of the lysozyme from bacteriophage lambda and its relationship with V and C-type lysozymes.
Evrard C, Fastrez J, Declercq JP. Evrard C, et al. J Mol Biol. 1998 Feb 13;276(1):151-64. doi: 10.1006/jmbi.1997.1499. J Mol Biol. 1998. PMID: 9514719 - The catalytic domain of a bacterial lytic transglycosylase defines a novel class of lysozymes.
Thunnissen AM, Isaacs NW, Dijkstra BW. Thunnissen AM, et al. Proteins. 1995 Jul;22(3):245-58. doi: 10.1002/prot.340220305. Proteins. 1995. PMID: 7479697 - Chitinolytic enzymes: catalysis, substrate binding, and their application.
Fukamizo T. Fukamizo T. Curr Protein Pept Sci. 2000 Jul;1(1):105-24. doi: 10.2174/1389203003381450. Curr Protein Pept Sci. 2000. PMID: 12369923 Review. - Lysozyme: a model enzyme in protein crystallography.
Strynadka NC, James MN. Strynadka NC, et al. EXS. 1996;75:185-222. doi: 10.1007/978-3-0348-9225-4_11. EXS. 1996. PMID: 8765301 Review.
Cited by
- Polyvalent Proteins, a Pervasive Theme in the Intergenomic Biological Conflicts of Bacteriophages and Conjugative Elements.
Iyer LM, Burroughs AM, Anand S, de Souza RF, Aravind L. Iyer LM, et al. J Bacteriol. 2017 Jul 11;199(15):e00245-17. doi: 10.1128/JB.00245-17. Print 2017 Aug 1. J Bacteriol. 2017. PMID: 28559295 Free PMC article. - Recent Insights Into the Prognostic and Therapeutic Applications of Lysozymes.
Jiang L, Li Y, Wang L, Guo J, Liu W, Meng G, Zhang L, Li M, Cong L, Sun M. Jiang L, et al. Front Pharmacol. 2021 Dec 3;12:767642. doi: 10.3389/fphar.2021.767642. eCollection 2021. Front Pharmacol. 2021. PMID: 34925025 Free PMC article. Review. - The Serratia marcescens NucE protein functions as a holin in Escherichia coli.
Berkmen M, Benedik MJ, Bläsi U. Berkmen M, et al. J Bacteriol. 1997 Oct;179(20):6522-4. doi: 10.1128/jb.179.20.6522-6524.1997. J Bacteriol. 1997. PMID: 9335307 Free PMC article. - Characterization, complete genome sequencing, and CRISPR/Cas9 system-based decontamination of a novel Escherichia coli phage TR1 from fermentation substrates.
Dong Y, Huang Y, Fan H, Song L, An X, Xu S, Li M, Tong Y. Dong Y, et al. Front Microbiol. 2023 Aug 11;14:1230775. doi: 10.3389/fmicb.2023.1230775. eCollection 2023. Front Microbiol. 2023. PMID: 37637117 Free PMC article. - Increased excision of the Salmonella prophage ST64B caused by a deficiency in Dam methylase.
Alonso A, Pucciarelli MG, Figueroa-Bossi N, García-del Portillo F. Alonso A, et al. J Bacteriol. 2005 Dec;187(23):7901-11. doi: 10.1128/JB.187.23.7901-7911.2005. J Bacteriol. 2005. PMID: 16291663 Free PMC article.