Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks - PubMed (original) (raw)
Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks
F K Skinner et al. J Comput Neurosci. 1994 Jun.
Abstract
We describe four different mechanisms that lead to oscillations in a network of two reciprocally inhibitory cells. In two cases (intrinsic release and intrinsic escape) the frequency of the network oscillation is insensitive to the threshold voltage of the synaptic potentials. In the other two cases (synaptic release and synaptic escape) the network frequency is strongly determined by the threshold voltage of the synaptic connections. The distinction between the different mechanisms blurs as the function describing synaptic activation becomes less steep and as the model neurons are removed from the relaxation regime. These mechanisms provide insight into the parameters that control network frequency in motor systems that depend on reciprocal inhibition.
Similar articles
- Inhibition synchronizes sparsely connected cortical neurons within and between columns in realistic network models.
Bush P, Sejnowski T. Bush P, et al. J Comput Neurosci. 1996 Jun;3(2):91-110. doi: 10.1007/BF00160806. J Comput Neurosci. 1996. PMID: 8840227 - Emergent oscillations in a realistic network: the role of inhibition and the effect of the spatiotemporal distribution of the input.
Pauluis Q, Baker SN, Olivier E. Pauluis Q, et al. J Comput Neurosci. 1999 Jan;6(1):27-48. doi: 10.1023/a:1008804916112. J Comput Neurosci. 1999. PMID: 10193645 - Electrical coupling can prevent expression of adult-like properties in an embryonic neural circuit.
Bem T, Le Feuvre Y, Simmers J, Meyrand P. Bem T, et al. J Neurophysiol. 2002 Jan;87(1):538-47. doi: 10.1152/jn.00372.2001. J Neurophysiol. 2002. PMID: 11784769 - [The baseline gamma oscillations in neural networks with interhemispheric connections].
Sil'kis IG, Bogdanova OG. Sil'kis IG, et al. Zh Vyssh Nerv Deiat Im I P Pavlova. 1997 Sep-Oct;47(5):839-57. Zh Vyssh Nerv Deiat Im I P Pavlova. 1997. PMID: 9454465 Review. Russian. - Presynaptic control of neurones in pattern-generating networks.
Nusbaum MP. Nusbaum MP. Curr Opin Neurobiol. 1994 Dec;4(6):909-14. doi: 10.1016/0959-4388(94)90141-4. Curr Opin Neurobiol. 1994. PMID: 7888776 Review.
Cited by
- Dynamical consequences of sensory feedback in a half-center oscillator coupled to a simple motor system.
Yu Z, Thomas PJ. Yu Z, et al. Biol Cybern. 2021 Apr;115(2):135-160. doi: 10.1007/s00422-021-00864-y. Epub 2021 Mar 3. Biol Cybern. 2021. PMID: 33656573 Free PMC article. - Conditions for Multi-functionality in a Rhythm Generating Network Inspired by Turtle Scratching.
Snyder AC, Rubin JE. Snyder AC, et al. J Math Neurosci. 2015 Dec;5(1):26. doi: 10.1186/s13408-015-0026-5. Epub 2015 Jul 17. J Math Neurosci. 2015. PMID: 26185063 Free PMC article. - Dynamic interaction of oscillatory neurons coupled with reciprocally inhibitory synapses acts to stabilize the rhythm period.
Mamiya A, Nadim F. Mamiya A, et al. J Neurosci. 2004 Jun 2;24(22):5140-50. doi: 10.1523/JNEUROSCI.0482-04.2004. J Neurosci. 2004. PMID: 15175383 Free PMC article. - Reduced computational modelling of Kölliker-Fuse contributions to breathing patterns in Rett syndrome.
Wittman S, Abdala AP, Rubin JE. Wittman S, et al. J Physiol. 2019 May;597(10):2651-2672. doi: 10.1113/JP277592. Epub 2019 Apr 16. J Physiol. 2019. PMID: 30908648 Free PMC article. - Switching mechanisms and bout times in a pair of reciprocally inhibitory neurons.
Patel M, Joshi B. Patel M, et al. J Comput Neurosci. 2014 Apr;36(2):177-91. doi: 10.1007/s10827-013-0464-6. Epub 2013 Jul 3. J Comput Neurosci. 2014. PMID: 23820857
References
- J Neurophysiol. 1993 Sep;70(3):1030-53 - PubMed
- Science. 1988 Dec 23;242(4886):1654-64 - PubMed
- Annu Rev Neurosci. 1991;14:39-57 - PubMed
- J Neurophysiol. 1993 Mar;69(3):992-5 - PubMed
- Science. 1985 Jul 26;229(4711):402-4 - PubMed