Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism - PubMed (original) (raw)
Review
Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism
A Destexhe et al. J Comput Neurosci. 1994 Aug.
Abstract
Markov kinetic models were used to synthesize a complete description of synaptic transmission, including opening of voltage-dependent channels in the presynaptic terminal, release of neurotransmitter, gating of postsynaptic receptors, and activation of second-messenger systems. These kinetic schemes provide a more general framework for modeling ion channels than the Hodgkin-Huxley formalism, supporting a continuous spectrum of descriptions ranging from the very simple and computationally efficient to the highly complex and biophysically precise. Examples are given of simple kinetic schemes based on fits to experimental data that capture the essential properties of voltage-gated, synaptic and neuromodulatory currents. The Markov formalism allows the dynamics of ionic currents to be considered naturally in the larger context of biochemical signal transduction. This framework can facilitate the integration of a wide range of experimental data and promote consistent theoretical analysis of neural mechanisms from molecular interactions to network computations.
Similar articles
- Afferent synaptic drive of rat medial nucleus tractus solitarius neurons: dynamic simulation of graded vesicular mobilization, release, and non-NMDA receptor kinetics.
Schild JH, Clark JW, Canavier CC, Kunze DL, Andresen MC. Schild JH, et al. J Neurophysiol. 1995 Oct;74(4):1529-48. doi: 10.1152/jn.1995.74.4.1529. J Neurophysiol. 1995. PMID: 8989391 - Analytical description of the activation of multi-state receptors by continuous neurotransmitter signals at brain synapses.
Uteshev VV, Pennefather PS. Uteshev VV, et al. Biophys J. 1997 Mar;72(3):1127-34. doi: 10.1016/S0006-3495(97)78761-7. Biophys J. 1997. PMID: 9138560 Free PMC article. - Neurotransmitter Release Can Be Stabilized by a Mechanism That Prevents Voltage Changes Near the End of Action Potentials from Affecting Calcium Currents.
Clarke SG, Scarnati MS, Paradiso KG. Clarke SG, et al. J Neurosci. 2016 Nov 9;36(45):11559-11572. doi: 10.1523/JNEUROSCI.0066-16.2016. J Neurosci. 2016. PMID: 27911759 Free PMC article. - Effects of neurotoxicants on synaptic transmission: lessons learned from electrophysiological studies.
Atchison WD. Atchison WD. Neurotoxicol Teratol. 1988 Sep-Oct;10(5):393-416. doi: 10.1016/0892-0362(88)90001-3. Neurotoxicol Teratol. 1988. PMID: 2854607 Review. - Neuronal excitability: voltage-dependent currents and synaptic transmission.
Rutecki PA. Rutecki PA. J Clin Neurophysiol. 1992 Apr;9(2):195-211. J Clin Neurophysiol. 1992. PMID: 1375602 Review.
Cited by
- Subcellular interactions between parallel fibre and climbing fibre signals in Purkinje cells predict sensitivity of classical conditioning to interstimulus interval.
Kotaleski JH, Lester D, Blackwell KT. Kotaleski JH, et al. Integr Physiol Behav Sci. 2002 Oct-Dec;37(4):265-92. doi: 10.1007/BF02734249. Integr Physiol Behav Sci. 2002. PMID: 12645844 - Cell type-specific mechanisms of information transfer in data-driven biophysical models of hippocampal CA3 principal neurons.
Linaro D, Levy MJ, Hunt DL. Linaro D, et al. PLoS Comput Biol. 2022 Apr 22;18(4):e1010071. doi: 10.1371/journal.pcbi.1010071. eCollection 2022 Apr. PLoS Comput Biol. 2022. PMID: 35452457 Free PMC article. - M-type channels selectively control bursting in rat dopaminergic neurons.
Drion G, Bonjean M, Waroux O, Scuvée-Moreau J, Liégeois JF, Sejnowski TJ, Sepulchre R, Seutin V. Drion G, et al. Eur J Neurosci. 2010 Mar;31(5):827-35. doi: 10.1111/j.1460-9568.2010.07107.x. Eur J Neurosci. 2010. PMID: 20180842 Free PMC article. - Analysis of Network Models with Neuron-Astrocyte Interactions.
Manninen T, Aćimović J, Linne ML. Manninen T, et al. Neuroinformatics. 2023 Apr;21(2):375-406. doi: 10.1007/s12021-023-09622-w. Epub 2023 Mar 23. Neuroinformatics. 2023. PMID: 36959372 Free PMC article. - Intrinsic and circuit properties favor coincidence detection for decoding oscillatory input.
Perez-Orive J, Bazhenov M, Laurent G. Perez-Orive J, et al. J Neurosci. 2004 Jun 30;24(26):6037-47. doi: 10.1523/JNEUROSCI.1084-04.2004. J Neurosci. 2004. PMID: 15229251 Free PMC article.
References
- J Neurosci. 1987 Oct;7(10):3306-16 - PubMed
- Proc Natl Acad Sci U S A. 1989 Dec;86(23):9574-8 - PubMed
- Physiol Rev. 1992 Oct;72(4 Suppl):S89-158 - PubMed
- J Gen Physiol. 1984 Oct;84(4):505-34 - PubMed
- Hippocampus. 1992 Jan;2(1):49-57 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Molecular Biology Databases