Mutational analysis of the human nucleotide excision repair gene ERCC1 - PubMed (original) (raw)
Mutational analysis of the human nucleotide excision repair gene ERCC1
A M Sijbers et al. Nucleic Acids Res. 1996.
Abstract
The human DNA repair protein ERCC1 resides in a complex together with the ERCC4, ERCC11 and XP-F correcting activities, thought to perform the 5' strand incision during nucleotide excision repair (NER). Its yeast counterpart, RAD1-RAD10, has an additional engagement in a mitotic recombination pathway, probably required for repair of DNA cross-links. Mutational analysis revealed that the poorly conserved N-terminal 91 amino acids of ERCC1 are dispensable for both repair functions, in contrast to a deletion of only four residues from the C-terminus. A database search revealed a strongly conserved motif in this C-terminus sharing sequence homology with many DNA break processing proteins, indicating that this part is primarily required for the presumed structure-specific endonuclease activity of ERCC1. Most missense mutations in the central region give rise to an unstable protein (complex). Accordingly, we found that free ERCC1 is very rapidly degraded, suggesting that protein-protein interactions provide stability. Survival experiments show that the removal of cross-links requires less ERCC1 than UV repair. This suggests that the ERCC1-dependent step in cross-link repair occurs outside the context of NER and provides an explanation for the phenotype of the human repair syndrome xeroderma pigmentosum group F.
Similar articles
- Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease.
Sijbers AM, de Laat WL, Ariza RR, Biggerstaff M, Wei YF, Moggs JG, Carter KC, Shell BK, Evans E, de Jong MC, Rademakers S, de Rooij J, Jaspers NG, Hoeijmakers JH, Wood RD. Sijbers AM, et al. Cell. 1996 Sep 6;86(5):811-22. doi: 10.1016/s0092-8674(00)80155-5. Cell. 1996. PMID: 8797827 - Co-correction of the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA repair defects in vitro.
Biggerstaff M, Szymkowski DE, Wood RD. Biggerstaff M, et al. EMBO J. 1993 Sep;12(9):3685-92. doi: 10.1002/j.1460-2075.1993.tb06043.x. EMBO J. 1993. PMID: 8253090 Free PMC article. - Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F.
van Vuuren AJ, Appeldoorn E, Odijk H, Yasui A, Jaspers NG, Bootsma D, Hoeijmakers JH. van Vuuren AJ, et al. EMBO J. 1993 Sep;12(9):3693-701. doi: 10.1002/j.1460-2075.1993.tb06044.x. EMBO J. 1993. PMID: 8253091 Free PMC article. - Interstrand crosslink repair: can XPF-ERCC1 be let off the hook?
Bergstralh DT, Sekelsky J. Bergstralh DT, et al. Trends Genet. 2008 Feb;24(2):70-6. doi: 10.1016/j.tig.2007.11.003. Epub 2008 Jan 14. Trends Genet. 2008. PMID: 18192062 Review. - Xeroderma pigmentosum and molecular cloning of DNA repair genes.
Boulikas T. Boulikas T. Anticancer Res. 1996 Mar-Apr;16(2):693-708. Anticancer Res. 1996. PMID: 8687116 Review.
Cited by
- Modulation of ERCC1-XPF Heterodimerization Inhibition via Structural Modification of Small Molecule Inhibitor Side-Chains.
Weilbeer C, Jay D, Donnelly JC, Gentile F, Karimi-Busheri F, Yang X, Mani RS, Yu Y, Elmenoufy AH, Barakat KH, Tuszynski JA, Weinfeld M, West FG. Weilbeer C, et al. Front Oncol. 2022 Mar 17;12:819172. doi: 10.3389/fonc.2022.819172. eCollection 2022. Front Oncol. 2022. PMID: 35372043 Free PMC article. - Mechanism of action of nucleotide excision repair machinery.
D'Souza A, Blee AM, Chazin WJ. D'Souza A, et al. Biochem Soc Trans. 2022 Feb 28;50(1):375-386. doi: 10.1042/BST20210246. Biochem Soc Trans. 2022. PMID: 35076656 Free PMC article. Review. - ERCC1 mutations impede DNA damage repair and cause liver and kidney dysfunction in patients.
Apelt K, White SM, Kim HS, Yeo JE, Kragten A, Wondergem AP, Rooimans MA, González-Prieto R, Wiegant WW, Lunke S, Flanagan D, Pantaleo S, Quinlan C, Hardikar W, van Attikum H, Vertegaal ACO, Wilson BT, Wolthuis RMF, Schärer OD, Luijsterburg MS. Apelt K, et al. J Exp Med. 2021 Mar 1;218(3):e20200622. doi: 10.1084/jem.20200622. J Exp Med. 2021. PMID: 33315086 Free PMC article. - Suppression effect of N-acetylcysteine on bone loss in ovariectomized mice.
Zhou X, Wang Z, Ni Y, Yu Y, Wang G, Chen L. Zhou X, et al. Am J Transl Res. 2020 Mar 15;12(3):731-742. eCollection 2020. Am J Transl Res. 2020. PMID: 32269708 Free PMC article. - Fanconi anemia pathway as a prospective target for cancer intervention.
Liu W, Palovcak A, Li F, Zafar A, Yuan F, Zhang Y. Liu W, et al. Cell Biosci. 2020 Mar 16;10:39. doi: 10.1186/s13578-020-00401-7. eCollection 2020. Cell Biosci. 2020. PMID: 32190289 Free PMC article. Review.
References
- Cell. 1986 Mar 28;44(6):913-23 - PubMed
- Mol Gen Genet. 1986 Jul;204(1):1-7 - PubMed
- Nucleic Acids Res. 1987 Nov 25;15(22):9195-213 - PubMed
- Methods Enzymol. 1987;154:367-82 - PubMed
- Nucleic Acids Res. 1988 Jun 24;16(12):5305-22 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials