Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks - PubMed (original) (raw)
Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks
D Contreras et al. J Physiol. 1996.
Abstract
1. To explore the nature of the long-lasting hyperpolarizations that characterize slow oscillations in corticothalamic circuits in vivo, intracellular recordings were obtained under ketamine-xylazine anaesthesia from cortical (Cx) cells of the cat precruciate motor cortex, thalamic reticular (RE) cells from the rostrolateral sector, and thalamocortical (TC) cells from the ventrolateral (VL) nucleus. 2. Measurements in the three cell types showed input resistance (Rin) to be highest during the long-lasting hyperpolarizations that correspond to depth-positive waves of the cortical EEG. Rin was lowest during the early phase of high-amplitude depth-negative EEG waves and increased thereafter until the next cycle of the slow oscillation. 3. Spontaneous long-lasting hyperpolarizations were compared with those evoked by dorsal thalamic stimulation. Voltage versus current (V-I) plots showed similar membrane potential (Vm) ranges and slopes for spontaneous and evoked hyperpolarizations in both Cx and RE cells. V-I plots from TC cells had similar slopes, but Vm during evoked hyperpolarizations was displaced towards more negative values. 4. Intracellular injection of constant hyperpolarizing current in Cx cells increased the amplitude of the initial part of the depolarizing plateau of the slow oscillation, but decreased the amplitude of the last part. 5. These results suggest disfacilitation to be the dominant mechanism in the membrane of cortical and thalamic cells during the spontaneous long-lasting hyperpolarizations, which shape and synchronize slow oscillations in corticothalamic networks. In Cx and RE cells, the same mechanism underlies thalamically evoked long-lasting hyperpolarizations. By contrast, evoked responses in TC cells show a strong additional hyperpolarizing factor. We propose that GABAB processes are stronger in TC than in Cx neurones, thus rendering the thalamus an easier target for absence-type epileptic phenomena through potentiation of thalamic rebound capabilities.
Similar articles
- Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat.
Timofeev I, Contreras D, Steriade M. Timofeev I, et al. J Physiol. 1996 Jul 1;494 ( Pt 1)(Pt 1):265-78. doi: 10.1113/jphysiol.1996.sp021489. J Physiol. 1996. PMID: 8814620 Free PMC article. - Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm.
Contreras D, Steriade M. Contreras D, et al. J Physiol. 1996 Jan 1;490 ( Pt 1)(Pt 1):159-79. doi: 10.1113/jphysiol.1996.sp021133. J Physiol. 1996. PMID: 8745285 Free PMC article. - Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats.
Timofeev I, Steriade M. Timofeev I, et al. J Neurophysiol. 1996 Dec;76(6):4152-68. doi: 10.1152/jn.1996.76.6.4152. J Neurophysiol. 1996. PMID: 8985908 - Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance.
Steriade M. Steriade M. Cereb Cortex. 1997 Sep;7(6):583-604. doi: 10.1093/cercor/7.6.583. Cereb Cortex. 1997. PMID: 9276182 Review. - Electrophysiological correlates of sleep delta waves.
Amzica F, Steriade M. Amzica F, et al. Electroencephalogr Clin Neurophysiol. 1998 Aug;107(2):69-83. doi: 10.1016/s0013-4694(98)00051-0. Electroencephalogr Clin Neurophysiol. 1998. PMID: 9751278 Review.
Cited by
- Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation.
Chen JY, Chauvette S, Skorheim S, Timofeev I, Bazhenov M. Chen JY, et al. J Physiol. 2012 Aug 15;590(16):3987-4010. doi: 10.1113/jphysiol.2012.227462. Epub 2012 May 28. J Physiol. 2012. PMID: 22641778 Free PMC article. - Spike synchronization in the cortex/basal-ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials.
Goldberg JA, Rokni U, Boraud T, Vaadia E, Bergman H. Goldberg JA, et al. J Neurosci. 2004 Jun 30;24(26):6003-10. doi: 10.1523/JNEUROSCI.4848-03.2004. J Neurosci. 2004. PMID: 15229247 Free PMC article. - LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics.
Hayut I, Fanselow EE, Connors BW, Golomb D. Hayut I, et al. PLoS Comput Biol. 2011 Oct;7(10):e1002248. doi: 10.1371/journal.pcbi.1002248. Epub 2011 Oct 27. PLoS Comput Biol. 2011. PMID: 22046121 Free PMC article. - Slow oscillations (</=1 Hz) mediated by GABAergic interneuronal networks in rat hippocampus.
Zhang Y, Perez Velazquez JL, Tian GF, Wu CP, Skinner FK, Carlen PL, Zhang L. Zhang Y, et al. J Neurosci. 1998 Nov 15;18(22):9256-68. doi: 10.1523/JNEUROSCI.18-22-09256.1998. J Neurosci. 1998. PMID: 9801365 Free PMC article. - Global intracellular slow-wave dynamics of the thalamocortical system.
Sheroziya M, Timofeev I. Sheroziya M, et al. J Neurosci. 2014 Jun 25;34(26):8875-93. doi: 10.1523/JNEUROSCI.4460-13.2014. J Neurosci. 2014. PMID: 24966387 Free PMC article.
References
- J Neurophysiol. 1966 May;29(3):369-81 - PubMed
- J Neurophysiol. 1964 Nov;27:1117-26 - PubMed
- J Neurophysiol. 1974 Sep;37(5):1065-92 - PubMed
- Exp Brain Res. 1983;51(2):227-35 - PubMed
- J Neurophysiol. 1983 Oct;50(4):798-818 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous