Mad proteins contain a dominant transcription repression domain - PubMed (original) (raw)
Mad proteins contain a dominant transcription repression domain
D E Ayer et al. Mol Cell Biol. 1996 Oct.
Abstract
Transcription repression by the basic region-helix-loop-helix-zipper (bHLHZip) protein Mad1 requires DNA binding as a ternary complex with Max and mSin3A or mSin3B, the mammalian orthologs of the Saccharomyces cerevisiae transcriptional corepressor SIN3. The interaction between Mad1 and mSin3 is mediated by three potential amphipathic alpha-helices: one in the N terminus of Mad (mSin interaction domain, or SID) and two within the second paired amphipathic helix domain (PAH2) of mSin3A. Mutations that alter the structure of the SID inhibit in vitro interaction between Mad and mSin3 and inactivate Mad's transcriptional repression activity. Here we show that a 35-residue region containing the SID represents a dominant repression domain whose activity can be transferred to a heterologous DNA binding region. A fusion protein comprising the Mad1 SID linked to a Ga14 DNA binding domain mediates repression of minimal as well as complex promoters dependent on Ga14 DNA binding sites. In addition, the SID represses the transcriptional activity of linked VP16 and c-Myc transactivation domains. When fused to a full-length c-Myc protein, the Mad1 SID specifically represses both c-Myc's transcriptional and transforming activities. Fusions between the GAL DNA binding domain and full-length mSin3 were also capable of repression. We show that the association between Mad1 and mSin3 is not only dependent on the helical SID but is also dependent on both putative helices of the mSin3 PAH2 region, suggesting that stable interaction requires all three helices. Our results indicate that the SID is necessary and sufficient for transcriptional repression mediated by the Mad protein family and that SID repression is dominant over several distinct transcriptional activators.
Similar articles
- A 13-amino acid amphipathic alpha-helix is required for the functional interaction between the transcriptional repressor Mad1 and mSin3A.
Eilers AL, Billin AN, Liu J, Ayer DE. Eilers AL, et al. J Biol Chem. 1999 Nov 12;274(46):32750-6. doi: 10.1074/jbc.274.46.32750. J Biol Chem. 1999. PMID: 10551834 - Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3.
Ayer DE, Lawrence QA, Eisenman RN. Ayer DE, et al. Cell. 1995 Mar 10;80(5):767-76. doi: 10.1016/0092-8674(95)90355-0. Cell. 1995. PMID: 7889570 - Functional analysis of the Mad1-mSin3A repressor-corepressor interaction reveals determinants of specificity, affinity, and transcriptional response.
Cowley SM, Kang RS, Frangioni JV, Yada JJ, DeGrand AM, Radhakrishnan I, Eisenman RN. Cowley SM, et al. Mol Cell Biol. 2004 Apr;24(7):2698-709. doi: 10.1128/MCB.24.7.2698-2709.2004. Mol Cell Biol. 2004. PMID: 15024060 Free PMC article. - The basic region/helix-loop-helix/leucine zipper domain of Myc proto-oncoproteins: function and regulation.
Lüscher B, Larsson LG. Lüscher B, et al. Oncogene. 1999 May 13;18(19):2955-66. doi: 10.1038/sj.onc.1202750. Oncogene. 1999. PMID: 10378692 Review. - The Mad protein family links transcriptional repression to cell differentiation.
McArthur GA, Laherty CD, Quéva C, Hurlin PJ, Loo L, James L, Grandori C, Gallant P, Shiio Y, Hokanson WC, Bush AC, Cheng PF, Lawrence QA, Pulverer B, Koskinen PJ, Foley KP, Ayer DE, Eisenman RN. McArthur GA, et al. Cold Spring Harb Symp Quant Biol. 1998;63:423-33. doi: 10.1101/sqb.1998.63.423. Cold Spring Harb Symp Quant Biol. 1998. PMID: 10384307 Review. No abstract available.
Cited by
- Wdr68 requires nuclear access for craniofacial development.
Wang B, Doan D, Roman Petersen Y, Alvarado E, Alvarado G, Bhandari A, Mohanty A, Mohanty S, Nissen RM. Wang B, et al. PLoS One. 2013;8(1):e54363. doi: 10.1371/journal.pone.0054363. Epub 2013 Jan 22. PLoS One. 2013. PMID: 23349862 Free PMC article. - The highly conserved region of the co-repressor Sin3A functionally interacts with the co-repressor Alien.
Moehren U, Dressel U, Reeb CA, Väisänen S, Dunlop TW, Carlberg C, Baniahmad A. Moehren U, et al. Nucleic Acids Res. 2004 Jun 1;32(10):2995-3004. doi: 10.1093/nar/gkh621. Print 2004. Nucleic Acids Res. 2004. PMID: 15173382 Free PMC article. - The suppression of MAD1 by AKT-mediated phosphorylation activates MAD1 target genes transcription.
Chou CK, Lee DF, Sun HL, Li LY, Lin CY, Huang WC, Hsu JM, Kuo HP, Yamaguchi H, Wang YN, Liu M, Wu HY, Liao PC, Yen CJ, Hung MC. Chou CK, et al. Mol Carcinog. 2009 Nov;48(11):1048-58. doi: 10.1002/mc.20557. Mol Carcinog. 2009. PMID: 19526459 Free PMC article. - Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor.
Nomura T, Khan MM, Kaul SC, Dong HD, Wadhwa R, Colmenares C, Kohno I, Ishii S. Nomura T, et al. Genes Dev. 1999 Feb 15;13(4):412-23. doi: 10.1101/gad.13.4.412. Genes Dev. 1999. PMID: 10049357 Free PMC article. - Set domain-dependent regulation of transcriptional silencing and growth control by SUV39H1, a mammalian ortholog of Drosophila Su(var)3-9.
Firestein R, Cui X, Huie P, Cleary ML. Firestein R, et al. Mol Cell Biol. 2000 Jul;20(13):4900-9. doi: 10.1128/MCB.20.13.4900-4909.2000. Mol Cell Biol. 2000. PMID: 10848615 Free PMC article.
References
- Cell. 1993 Jul 2;73(7):1361-75 - PubMed
- Cell. 1993 Jul 16;74(1):205-14 - PubMed
- Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7804-8 - PubMed
- Genes Dev. 1992 Dec;6(12B):2513-23 - PubMed
- Genes Dev. 1993 Nov;7(11):2110-9 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases