Heterochromatin and gene expression in Drosophila - PubMed (original) (raw)
Review
Heterochromatin and gene expression in Drosophila
K S Weiler et al. Annu Rev Genet. 1995.
Abstract
Heterochromatin is both necessary for the expression of heterochromatic genes and inhibitory for the expression of euchromatic genes. These two properties of heterochromatin have been elucidated from the study of chromosome rearrangements that induce position effect variegation (PEV) in Drosophila melanogaster. Novel euchromatin-heterochromatin junctions can affect the expression of euchromatic and heterochromatic genes located several megabases away, distinguishing higher order chromatin structure from most other regulatory mechanisms. Studies of PEV promise insights into the basis for heterochromatin formation and the role of higher order chromatin and chromosome structure in gene regulation. We evaluate the models and experimental data that address the mechanisms of PEV in different cell types, the potential functions of modifiers of PEV, and the relationship of PEV to other phenomena associated with variegated gene expression in Drosophila.
Similar articles
- Chromatin structure and the regulation of gene expression: the lessons of PEV in Drosophila.
Girton JR, Johansen KM. Girton JR, et al. Adv Genet. 2008;61:1-43. doi: 10.1016/S0065-2660(07)00001-6. Adv Genet. 2008. PMID: 18282501 Review. - Position effect variegation and chromatin proteins.
Reuter G, Spierer P. Reuter G, et al. Bioessays. 1992 Sep;14(9):605-12. doi: 10.1002/bies.950140907. Bioessays. 1992. PMID: 1365916 Review. - Cis-effects of heterochromatin on heterochromatic and euchromatic gene activity in Drosophila melanogaster.
Howe M, Dimitri P, Berloco M, Wakimoto BT. Howe M, et al. Genetics. 1995 Jul;140(3):1033-45. doi: 10.1093/genetics/140.3.1033. Genetics. 1995. PMID: 7672575 Free PMC article. - Suppressors of position-effect variegation in Drosophila melanogaster affect expression of the heterochromatic gene light in the absence of a chromosome rearrangement.
Clegg NJ, Honda BM, Whitehead IP, Grigliatti TA, Wakimoto B, Brock HW, Lloyd VK, Sinclair DA. Clegg NJ, et al. Genome. 1998 Aug;41(4):495-503. Genome. 1998. PMID: 9796098
Cited by
- Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila.
Vermaak D, Henikoff S, Malik HS. Vermaak D, et al. PLoS Genet. 2005 Jul;1(1):96-108. doi: 10.1371/journal.pgen.0010009. Epub 2005 Jul 25. PLoS Genet. 2005. PMID: 16103923 Free PMC article. - A role for the replication proteins PCNA, RF-C, polymerase epsilon and Cdc45 in transcriptional silencing in Saccharomyces cerevisiae.
Ehrenhofer-Murray AE, Kamakaka RT, Rine J. Ehrenhofer-Murray AE, et al. Genetics. 1999 Nov;153(3):1171-82. doi: 10.1093/genetics/153.3.1171. Genetics. 1999. PMID: 10545450 Free PMC article. - pitkin(D), a novel gain-of-function enhancer of position-effect variegation, affects chromatin regulation during oogenesis and early embryogenesis in Drosophila.
Kuhfittig S, Szabad J, Schotta G, Hoffmann J, Máthé E, Reuter G. Kuhfittig S, et al. Genetics. 2001 Mar;157(3):1227-44. doi: 10.1093/genetics/157.3.1227. Genetics. 2001. PMID: 11238407 Free PMC article. - Eu-heterochromatic rearrangements induce replication of heterochromatic sequences normally underreplicated in polytene chromosomes of Drosophila melanogaster.
Abramov YA, Kogan GL, Tolchkov EV, Rasheva VI, Lavrov SA, Bonaccorsi S, Kramerova IA, Gvozdev VA. Abramov YA, et al. Genetics. 2005 Dec;171(4):1673-81. doi: 10.1534/genetics.105.044461. Epub 2005 Jul 14. Genetics. 2005. PMID: 16020783 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases