Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei - PubMed (original) (raw)

Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei

W Morishita et al. J Neurophysiol. 1996 Jul.

Abstract

1. The mechanisms underlying long-term depression (LTD) of gamma-aminobutyric acid-A (GABAA) receptor-mediated synaptic transmission induced by 10-Hz stimulation of the inhibitory afferents were investigated using perforated and whole cell voltage-clamp recordings from neurons of the deep cerebellar nuclei (DCN). 2. LTD of inhibitory postsynaptic currents (IPSCs) was reliably induced when the 10-Hz stimulation was delivered under current-clamp conditions where the postsynaptic neuronal membrane was allowed to depolarize. 3. Currents elicited by local applications of the GABAA receptor agonist, 4,5,6,7-tetrahydroisoxazolo [5,4-c]pyridin-3-ol hydrochloride (THIP) were also depressed during LTD. 4. LTD could be induced heterosynaptically and did not require the activation of GABAA receptors during the 10-Hz stimulation. 5. In cells loaded with QX-314 and superfused with media containing 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2-amino-5-phosphonovaleric acid (APV), a series of depolarizing pulses (50 mV, 200 ms) induced a sustained depression of the IPSC. However, this was not observed in cells recorded with high bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA)-containing pipette solutions or when they were exposed to the L-type Ca2+ channel antagonist, nitrendipine. 6. The 10-Hz-induced LTD was also inhibited by BAPTA and was significantly reduced when DCN cells were loaded with microcystin LR or treated with okadaic acid, both inhibitors of protein phosphatases. 7. These results indicate that increases in postsynaptic [Ca2+] and phosphatase activity can reduce the efficacy of GABAA receptor-mediated synaptic transmission.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources