Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: a molecular dynamics free energy perturbation study - PubMed (original) (raw)
Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: a molecular dynamics free energy perturbation study
B Roux et al. Biophys J. 1996 Aug.
Abstract
The proton transfer activity of the light-driven proton pump, bacteriorhodopsin (bR) in the photochemical cycle might imply internal water molecules. The free energy of inserting water molecules in specific sites along the bR transmembrane channel has been calculated using molecular dynamics simulations based on a microscopic model. The existence of internal hydration is related to the free energy change on transfer of a water molecule from bulk solvent into a specific binding site. Thermodynamic integration and perturbation methods were used to calculate free energies of hydration for each hydrated model from molecular dynamics simulations of the creation of water molecules into specific protein-binding sites. A rigorous statistical mechanical formulation allowing the calculation of the free energy of transfer of water molecules from the bulk to a protein cavity is used to estimate the probabilities of occupancy in the putative bR proton channel. The channel contains a region lined primarily by nonpolar side-chains. Nevertheless, the results indicate that the transfer of four water molecules from bulk water to this apparently hydrophobic region is thermodynamically permitted. The column forms a continuous hydrogen-bonded chain over 12 A between a proton donor, Asp 96, and the retinal Schiff base acceptor. The presence of two water molecules in direct hydrogen-bonding association with the Schiff base is found to be strongly favorable thermodynamically. The implications of these results for the mechanism of proton transfer in bR are discussed.
Similar articles
- Functional interactions in bacteriorhodopsin: a theoretical analysis of retinal hydrogen bonding with water.
Nina M, Roux B, Smith JC. Nina M, et al. Biophys J. 1995 Jan;68(1):25-39. doi: 10.1016/S0006-3495(95)80184-0. Biophys J. 1995. PMID: 7711248 Free PMC article. - Key role of active-site water molecules in bacteriorhodopsin proton-transfer reactions.
Bondar AN, Baudry J, Suhai S, Fischer S, Smith JC. Bondar AN, et al. J Phys Chem B. 2008 Nov 27;112(47):14729-41. doi: 10.1021/jp801916f. J Phys Chem B. 2008. PMID: 18973373 - Water dynamics simulation as a tool for probing proton transfer pathways in a heptahelical membrane protein.
Kandt C, Gerwert K, Schlitter J. Kandt C, et al. Proteins. 2005 Feb 15;58(3):528-37. doi: 10.1002/prot.20343. Proteins. 2005. PMID: 15609339 - Understanding structure and function in the light-driven proton pump bacteriorhodopsin.
Lanyi JK. Lanyi JK. J Struct Biol. 1998 Dec 15;124(2-3):164-78. doi: 10.1006/jsbi.1998.4044. J Struct Biol. 1998. PMID: 10049804 Review. - Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin.
Kandori H. Kandori H. Biochim Biophys Acta. 2004 Jul 23;1658(1-2):72-9. doi: 10.1016/j.bbabio.2004.03.015. Biochim Biophys Acta. 2004. PMID: 15282177 Review.
Cited by
- Voltage Imaging with Engineered Proton-Pumping Rhodopsins: Insights from the Proton Transfer Pathway.
Meng X, Ganapathy S, van Roemburg L, Post M, Brinks D. Meng X, et al. ACS Phys Chem Au. 2023 May 3;3(4):320-333. doi: 10.1021/acsphyschemau.3c00003. eCollection 2023 Jul 26. ACS Phys Chem Au. 2023. PMID: 37520318 Free PMC article. Review. - Comparison of Receptor-Ligand Restraint Schemes for Alchemical Absolute Binding Free Energy Calculations.
Clark F, Robb G, Cole DJ, Michel J. Clark F, et al. J Chem Theory Comput. 2023 Jun 27;19(12):3686-3704. doi: 10.1021/acs.jctc.3c00139. Epub 2023 Jun 7. J Chem Theory Comput. 2023. PMID: 37285579 Free PMC article. - Absolute Binding Free Energy Calculations for Buried Water Molecules.
Ge Y, Baumann HM, Mobley DL. Ge Y, et al. J Chem Theory Comput. 2022 Nov 8;18(11):6482-6499. doi: 10.1021/acs.jctc.2c00658. Epub 2022 Oct 5. J Chem Theory Comput. 2022. PMID: 36197451 Free PMC article. - Concentration-dependent thermodynamic analysis of the partition process of small ligands into proteins.
Cirqueira L, Stock L, Treptow W. Cirqueira L, et al. Comput Struct Biotechnol J. 2022 Sep 1;20:4885-4891. doi: 10.1016/j.csbj.2022.08.049. eCollection 2022. Comput Struct Biotechnol J. 2022. PMID: 36147679 Free PMC article. - Comparison of Grand Canonical and Conventional Molecular Dynamics Simulation Methods for Protein-Bound Water Networks.
Ekberg V, Samways ML, Misini Ignjatović M, Essex JW, Ryde U. Ekberg V, et al. ACS Phys Chem Au. 2022 May 25;2(3):247-259. doi: 10.1021/acsphyschemau.1c00052. Epub 2022 Feb 11. ACS Phys Chem Au. 2022. PMID: 35637786 Free PMC article.
References
- J Mol Biol. 1990 Jun 20;213(4):899-929 - PubMed
- J Mol Biol. 1995 Jun 30;250(1):94-111 - PubMed
- Proc Natl Acad Sci U S A. 1989 Apr;86(7):2167-71 - PubMed
- J Biol Chem. 1991 Apr 15;266(11):6919-27 - PubMed
- Biochemistry. 1990 Jul 24;29(29):6873-83 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources