Phosphopeptide analysis by matrix-assisted laser desorption time-of-flight mass spectrometry - PubMed (original) (raw)

. 1996 Oct 1;68(19):3413-21.

doi: 10.1021/ac960221g.

Affiliations

Phosphopeptide analysis by matrix-assisted laser desorption time-of-flight mass spectrometry

R S Annan et al. Anal Chem. 1996.

Abstract

In this paper we present methods for identifying and sequencing phosphopeptides in simple mixtures, such as HPLC fractions, at the subpicomole level by (+) ion matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-MS). Data are presented which indicate that when a reflectron time-of-flight mass spectrometer is used, MALDI can distinguish tyrosine phosphorylation from serine and threonine phosphorylation for peptides containing a single phosphate group. Phosphopeptides are identified in the (+) ion MALDI reflector spectrum by the presence of [MH-H3PO4]+ and [MH-HPO3]+ fragment ions formed by metastable decomposition. An abundant [MH-H3PO4]+ ion, accompanied by a weaker [MH-HPO3]+ ion indicates that the peptide is most likely phosphorylated on serine or threonine. In contrast, phosphotyrosine-containing peptides generally exhibit [MH-HPO3]+ fragment ions and little, if any [MH-H3PO4]+. Ambiguities do arise, most often with phosphopeptides that contain residues which readily lose water (such as unmodified serine), but these can often be resolved by recording a complete metastable fragment ion (postsource decay) spectrum. Postsource decay is shown here to be a viable technique for sequencing phosphopeptides. It can be used to distinguish between serine/ threonine and tyrosine phosphorylation and in many cases can be used to determine the exact site of phosphorylation in a peptide sequence. Nearly complete sequence coverage and phosphorylation site mapping is generally possible using approximately 300 fmol of peptide.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources