Distribution and characterization of microglia/macrophages in human brain tumors - PubMed (original) (raw)

Distribution and characterization of microglia/macrophages in human brain tumors

W Roggendorf et al. Acta Neuropathol. 1996 Sep.

Abstract

The role of inflammatory reactions in brain tumors is still unclear. In particular, there is little information about the participation of the microglia/macrophage cell system. We therefore investigated 72 surgical biopsy samples of brain tumors (astrocytoma, glioblastoma, oligodendroglioma, ependymoma, medulloblastoma, cerebral lymphoma, gangliocytoma, neurocytoma and germinoma) and the brains of eight cases with malignant gliomas that came to autopsy, using immunohistochemical markers for the monocyte/macrophage lineage (Ki-M1P, HLA-DR, KP1, My4, My7, Ki-M1, Ki-M6, EBM 11). These markers allowed us to characterize four subtypes of the microglia/macrophage cell system: ramified microglia, ameboid microglia, perivascular microglia and brain macrophages. Among the different tumors, glioblastomas and anaplastic gliomas showed the largest number of mixed cell populations, which consisted of macro-phages and ramified and ameboid microglia. In glial tumors of low malignancy fewer, predominantly ameboid, microglia were found. Neuronal tumors showed only a mild increase of microglia. Cerebral lymphomas contained macrophages diffusely distributed within the tumor center, while activated microglia were prominent at the border zone and in the adjacent brain tissue. The autopsy cases were used to study the morphometric distribution of microglia/macrophages. There was a significant increase of microglia/macrophages within the tumor, but no differences were seen between central and peripheral tumor areas. The non-neoplastic gray and white matter contained more microglial cells than controls. We conclude that the distribution pattern of ameboid and ramified microglial cells and macrophages is distinct in most of the investigated tumor types, underlining the complex immunological function of the microglia/macrophage cell system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources