gutfeeling, a Drosophila gene encoding an antizyme-like protein, is required for late differentiation of neurons and muscles - PubMed (original) (raw)
gutfeeling, a Drosophila gene encoding an antizyme-like protein, is required for late differentiation of neurons and muscles
A Salzberg et al. Genetics. 1996 Sep.
Abstract
The gutfeeling (guf) gene was uncovered in a genetic screen for genes that are required for proper development of the embryonic peripheral nervous system. Mutations in guf cause defects in growth cone guidance and fasciculation and loss of expression of several neuronal markers in the embryonic peripheral and central nervous systems. guf is required for terminal differentiation of neuronal cells. Mutations in guf also affect the development of muscles in the embryo. In the absence or guf activity, myoblasts are formed properly, but myoblast fusion and further differentiation of muscle fibers is severely impaired. The guf gene was cloned and found to encode a 21-kD protein with a significant sequence similarity to the mammalian ornithine decarboxylase antizyme (OAZ). In mammals, OAZ plays a key regulatory role in the polyamine biosynthetic pathway through its binding to, and inhibition of, ornithine decarboxylase (ODC), the first enzyme in the pathway. The elaborate regulation of ODC activity in mammals still lacks a defined developmental role and little is known about the involvement of polyamines in cellular differentiation. GUF is the first antizyme-like protein identified in invertebrates. We discuss its possible developmental roles in light of this homology.
Similar articles
- Identification and characterization of testis specific ornithine decarboxylase antizyme (OAZ-t) gene: expression in haploid germ cells and polyamine-induced frameshifting.
Tosaka Y, Tanaka H, Yano Y, Masai K, Nozaki M, Yomogida K, Otani S, Nojima H, Nishimune Y. Tosaka Y, et al. Genes Cells. 2000 Apr;5(4):265-76. doi: 10.1046/j.1365-2443.2000.00324.x. Genes Cells. 2000. PMID: 10792465 - Cloning of antizyme inhibitor, a highly homologous protein to ornithine decarboxylase.
Murakami Y, Ichiba T, Matsufuji S, Hayashi S. Murakami Y, et al. J Biol Chem. 1996 Feb 16;271(7):3340-2. doi: 10.1074/jbc.271.7.3340. J Biol Chem. 1996. PMID: 8631929 - Regulation of ornithine decarboxylase by antizymes and antizyme inhibitor in zebrafish (Danio rerio).
Hascilowicz T, Murai N, Matsufuji S, Murakami Y. Hascilowicz T, et al. Biochim Biophys Acta. 2002 Oct 11;1578(1-3):21-8. doi: 10.1016/s0167-4781(02)00476-1. Biochim Biophys Acta. 2002. PMID: 12393184 - Regulation of polyamine biosynthesis by antizyme and some recent developments relating the induction of polyamine biosynthesis to cell growth. Review.
Canellakis ES, Kyriakidis DA, Rinehart CA Jr, Huang SC, Panagiotidis C, Fong WF. Canellakis ES, et al. Biosci Rep. 1985 Mar;5(3):189-204. doi: 10.1007/BF01119588. Biosci Rep. 1985. PMID: 3893559 Review. - The antizyme family for regulating polyamines.
Kahana C. Kahana C. J Biol Chem. 2018 Nov 30;293(48):18730-18735. doi: 10.1074/jbc.TM118.003339. Epub 2018 Oct 24. J Biol Chem. 2018. PMID: 30355739 Free PMC article. Review.
Cited by
- The gene expression network regulating queen brain remodeling after insemination and its parallel use in ants with reproductive workers.
Nagel M, Qiu B, Brandenborg LE, Larsen RS, Ning D, Boomsma JJ, Zhang G. Nagel M, et al. Sci Adv. 2020 Sep 16;6(38):eaaz5772. doi: 10.1126/sciadv.aaz5772. Print 2020 Sep. Sci Adv. 2020. PMID: 32938672 Free PMC article. - The role of polyamines in protein-dependent hypoxic tolerance of Drosophila.
Vigne P, Frelin C. Vigne P, et al. BMC Physiol. 2008 Dec 2;8:22. doi: 10.1186/1472-6793-8-22. BMC Physiol. 2008. PMID: 19055734 Free PMC article. - Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation.
Ivanov IP, Atkins JF. Ivanov IP, et al. Nucleic Acids Res. 2007;35(6):1842-58. doi: 10.1093/nar/gkm035. Epub 2007 Mar 1. Nucleic Acids Res. 2007. PMID: 17332016 Free PMC article. Review. - Gain-of-function screen for genes that affect Drosophila muscle pattern formation.
Staudt N, Molitor A, Somogyi K, Mata J, Curado S, Eulenberg K, Meise M, Siegmund T, Häder T, Hilfiker A, Brönner G, Ephrussi A, Rørth P, Cohen SM, Fellert S, Chung HR, Piepenburg O, Schäfer U, Jäckle H, Vorbrüggen G. Staudt N, et al. PLoS Genet. 2005 Oct;1(4):e55. doi: 10.1371/journal.pgen.0010055. Epub 2005 Oct 28. PLoS Genet. 2005. PMID: 16254604 Free PMC article. - Germline cell death is inhibited by P-element insertions disrupting the dcp-1/pita nested gene pair in Drosophila.
Laundrie B, Peterson JS, Baum JS, Chang JC, Fileppo D, Thompson SR, McCall K. Laundrie B, et al. Genetics. 2003 Dec;165(4):1881-8. doi: 10.1093/genetics/165.4.1881. Genetics. 2003. PMID: 14704173 Free PMC article.
References
- Proc Natl Acad Sci U S A. 1982 Dec;79(24):7929-33 - PubMed
- Biochem J. 1992 May 1;283 ( Pt 3):661-4 - PubMed
- J Physiol. 1984 Feb;347:641-57 - PubMed
- Science. 1984 Sep 21;225(4668):1271-9 - PubMed
- Annu Rev Biochem. 1984;53:749-90 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials