PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene - PubMed (original) (raw)
. 1996 Oct 1;15(19):5336-48.
Affiliations
- PMID: 8895578
- PMCID: PMC452277
PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene
K Schoonjans et al. EMBO J. 1996.
Abstract
Increased activity of lipoprotein lipase (LPL) may explain the hypotriglyceridemic effects of fibrates, thiazolidinediones and fatty acids, which are known activators (and/or ligands) of the various peroxisome proliferator-activated receptors (PPARs). Treatment with compounds which activate preferentially PPARalpha, such as fenofibrate, induced LPL expression exclusively in rat liver. In contrast, the antidiabetic thiazolidinedione BRL 49653, a high affinity ligand for PPARgamma, had no effect on liver, but induced LPL expression in rat adipose tissue. In the hepatocyte cell line AML-12, fenofibric acid, but not BRL 49653, induced LPL mRNA, whereas in 3T3-L1 preadipocytes, the PPARgamma ligand induced LPL mRNA levels much quicker and to a higher extent than fenofibric acid. In both the in vivo and in vitro studies, inducibility by either PPARalpha or gamma activators, correlated with the tissue distribution of the respective PPARs: an adipocyte-restricted expression of PPARgamma, whereas PPARalpha was expressed predominantly in liver. A sequence element was identified in the human LPL promoter that mediates the functional responsiveness to fibrates and thiazolidinediones. Methylation interference and gel retardation assays demonstrated that a PPARalpha or gamma and the 9-cis retinoic acid receptor (RXR) heterodimers bind to this sequence -169 TGCCCTTTCCCCC -157. These data provide evidence that transcriptional activation of the LPL gene by fibrates and thiazolidinediones is mediated by PPAR-RXR heterodimers and contributes significantly to their hypotriglyceridemic effects in vivo. Whereas thiazolidinediones predominantly affect adipocyte LPL production through activation of PPARgamma, fibrates exert their effects mainly in the liver via activation of PPARalpha.
Similar articles
- Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators.
Martin G, Schoonjans K, Lefebvre AM, Staels B, Auwerx J. Martin G, et al. J Biol Chem. 1997 Nov 7;272(45):28210-7. doi: 10.1074/jbc.272.45.28210. J Biol Chem. 1997. PMID: 9353271 - Regulation of triglyceride metabolism by PPARs: fibrates and thiazolidinediones have distinct effects.
Auwerx J, Schoonjans K, Fruchart JC, Staels B. Auwerx J, et al. J Atheroscler Thromb. 1996;3(2):81-9. doi: 10.5551/jat1994.3.81. J Atheroscler Thromb. 1996. PMID: 9226459 Review. - Identification of a functional peroxisome proliferator-responsive element in the murine fatty acid transport protein gene.
Frohnert BI, Hui TY, Bernlohr DA. Frohnert BI, et al. J Biol Chem. 1999 Feb 12;274(7):3970-7. doi: 10.1074/jbc.274.7.3970. J Biol Chem. 1999. PMID: 9933587 - The effects of fibrates and thiazolidinediones on plasma triglyceride metabolism are mediated by distinct peroxisome proliferator activated receptors (PPARs).
Staels B, Schoonjans K, Fruchart JC, Auwerx J. Staels B, et al. Biochimie. 1997 Feb-Mar;79(2-3):95-9. doi: 10.1016/s0300-9084(97)81497-6. Biochimie. 1997. PMID: 9209702 Review.
Cited by
- Vitamin B6 regulates mRNA expression of peroxisome proliferator-activated receptor-γ target genes.
Yanaka N, Kanda M, Toya K, Suehiro H, Kato N. Yanaka N, et al. Exp Ther Med. 2011 May;2(3):419-424. doi: 10.3892/etm.2011.238. Epub 2011 Mar 21. Exp Ther Med. 2011. PMID: 22977520 Free PMC article. - PPARγ lipodystrophy mutants reveal intermolecular interactions required for enhancer activation.
Madsen MS, Broekema MF, Madsen MR, Koppen A, Borgman A, Gräwe C, Thomsen EGK, Westland D, Kranendonk MEG, Koerkamp MG, Hamers N, Bonvin AMJJ, Pittol JMR, Natarajan KN, Kersten S, Holstege FCP, Monajemi H, van Mil SWC, Vermeulen M, Kragelund BB, Cassiman D, Mandrup S, Kalkhoven E. Madsen MS, et al. Nat Commun. 2022 Nov 19;13(1):7090. doi: 10.1038/s41467-022-34766-9. Nat Commun. 2022. PMID: 36402763 Free PMC article. - Lipid metabolism-related gene expression pattern of Atlantic bluefin tuna (Thunnus thynnus L.) larvae fed on live prey.
Betancor MB, Ortega A, de la Gándara F, Tocher DR, Mourente G. Betancor MB, et al. Fish Physiol Biochem. 2017 Apr;43(2):493-516. doi: 10.1007/s10695-016-0305-4. Epub 2016 Nov 4. Fish Physiol Biochem. 2017. PMID: 27815797 Free PMC article. - Lipid Storage, Lipolysis, and Lipotoxicity in Obesity.
Engin A. Engin A. Adv Exp Med Biol. 2024;1460:97-129. doi: 10.1007/978-3-031-63657-8_4. Adv Exp Med Biol. 2024. PMID: 39287850 Review. - Mitochondrial diabetes mellitus.
Maassen JA, Janssen GM, Lemkes HH. Maassen JA, et al. J Endocrinol Invest. 2002 May;25(5):477-84. doi: 10.1007/BF03344042. J Endocrinol Invest. 2002. PMID: 12035948 Review.
References
- Proc Natl Acad Sci U S A. 1978 Dec;75(12):6054-8 - PubMed
- J Clin Invest. 1982 May;69(5):1072-80 - PubMed
- Nucleic Acids Res. 1982 Dec 20;10(24):7895-903 - PubMed
- Nucleic Acids Res. 1983 Jan 11;11(1):141-58 - PubMed
- Eur J Clin Pharmacol. 1983;25(1):57-63 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases