Cloning and characterization of a Dictyostelium myosin I heavy chain kinase activated by Cdc42 and Rac - PubMed (original) (raw)

. 1996 Oct 25;271(43):27044-8.

doi: 10.1074/jbc.271.43.27044.

Affiliations

Free article

Cloning and characterization of a Dictyostelium myosin I heavy chain kinase activated by Cdc42 and Rac

S F Lee et al. J Biol Chem. 1996.

Free article

Abstract

The motile activities of the small, single-headed class I myosins (myosin I) from the lower eukaryotes Acanthamoeba and Dictyostelium are activated by phosphorylation of a single serine or threonine residue in the head domain of the heavy chain. Recently, we purified a myosin I heavy chain kinase (MIHCK) from Dictyostelium based on its ability to activate the Dictyostelium myosin ID isozyme (Lee, S. -F., and Côté, G. P. (1995) J. Biol. Chem. 270, 11776-11782). The complete sequence of the Dictyostelium MIHCK has now been determined, revealing a protein of 98 kDa that is composed of an amino-terminal domain rich in proline, glutamine, and serine, a putative Cdc42/Rac binding motif, and a carboxyl-terminal kinase catalytic domain. MIHCK shares significant sequence identity with the Saccharomyces cerevisiae Ste20p kinase and the mammalian p21-activated kinase. Gel overlay assays and affinity chromatography experiments showed that MIHCK interacted with GTPgammaS (guanosine 5'-3-O-(thiotriphosphate))-labeled Cdc42 and Rac1 but not RhoA. In the presence of GTPgammaS-Rac1 MIHCK autophosphorylation increased from 1 to 9 mol of phosphate/mol, and the rate of Dictyostelium myosin ID phosphorylation was stimulated 10-fold. MIHCK may therefore provide a direct link between Cdc42/Rac signaling pathways and motile processes driven by myosin I molecules.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources